,
Cipriano Junior Cioffo
,
Alessandro Di Giorgio
,
Elena Di Lavore
Creative Commons Attribution 4.0 International license
Tape diagrams provide a graphical representation for arrows of rig categories, namely categories equipped with two monoidal structures, ⊕ and ⊗, where ⊗ distributes over ⊕. However, their applicability is limited to categories where ⊕ is a biproduct, i.e., both a categorical product and a coproduct. In this work, we extend tape diagrams to deal with Kleisli categories of symmetric monoidal monads, presented by algebraic theories.
@InProceedings{bonchi_et_al:LIPIcs.CALCO.2025.11,
author = {Bonchi, Filippo and Cioffo, Cipriano Junior and Di Giorgio, Alessandro and Di Lavore, Elena},
title = {{Tape Diagrams for Monoidal Monads}},
booktitle = {11th Conference on Algebra and Coalgebra in Computer Science (CALCO 2025)},
pages = {11:1--11:24},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-383-6},
ISSN = {1868-8969},
year = {2025},
volume = {342},
editor = {C\^{i}rstea, Corina and Knapp, Alexander},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2025.11},
URN = {urn:nbn:de:0030-drops-235703},
doi = {10.4230/LIPIcs.CALCO.2025.11},
annote = {Keywords: rig categories, string diagrams, monads, probabilistic control}
}