In this paper, we show exponential lower bounds for the class of homogeneous depth-5 circuits over all small finite fields. More formally, we show that there is an explicit family {P_d} of polynomials in VNP, where P_d is of degree d in n = d^{O(1)} variables, such that over all finite fields GF(q), any homogeneous depth-5 circuit which computes P_d must have size at least exp(Omega_q(sqrt{d})). To the best of our knowledge, this is the first super-polynomial lower bound for this class for any non-binary field. Our proof builds up on the ideas developed on the way to proving lower bounds for homogeneous depth-4 circuits [Gupta et al., Fournier et al., Kayal et al., Kumar-Saraf] and for non-homogeneous depth-3 circuits over finite fields [Grigoriev-Karpinski, Grigoriev-Razborov]. Our key insight is to look at the space of shifted partial derivatives of a polynomial as a space of functions from GF(q)^n to GF(q) as opposed to looking at them as a space of formal polynomials and builds over a tighter analysis of the lower bound of Kumar and Saraf [Kumar-Saraf].
@InProceedings{kumar_et_al:LIPIcs.CCC.2017.31, author = {Kumar, Mrinal and Saptharishi, Ramprasad}, title = {{An Exponential Lower Bound for Homogeneous Depth-5 Circuits over Finite Fields}}, booktitle = {32nd Computational Complexity Conference (CCC 2017)}, pages = {31:1--31:30}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-040-8}, ISSN = {1868-8969}, year = {2017}, volume = {79}, editor = {O'Donnell, Ryan}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.31}, URN = {urn:nbn:de:0030-drops-75142}, doi = {10.4230/LIPIcs.CCC.2017.31}, annote = {Keywords: arithmetic circuits, lower bounds, separations, depth reduction} }
Feedback for Dagstuhl Publishing