Complete Derandomization of Identity Testing and Reconstruction of Read-Once Formulas

Authors Daniel Minahan, Ilya Volkovich



PDF
Thumbnail PDF

File

LIPIcs.CCC.2017.32.pdf
  • Filesize: 489 kB
  • 13 pages

Document Identifiers

Author Details

Daniel Minahan
Ilya Volkovich

Cite As Get BibTex

Daniel Minahan and Ilya Volkovich. Complete Derandomization of Identity Testing and Reconstruction of Read-Once Formulas. In 32nd Computational Complexity Conference (CCC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 79, pp. 32:1-32:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017) https://doi.org/10.4230/LIPIcs.CCC.2017.32

Abstract

In this paper we study the identity testing problem of arithmetic read-once formulas (ROF) and some related models. A read-once formula is formula (a circuit whose underlying graph is a tree) in which the operations are {+,x} and such that every input variable labels at most one leaf. We obtain the first polynomial-time deterministic identity testing algorithm that operates in the black-box setting for read-once formulas, as well as some other related models. As an application, we obtain the first polynomial-time deterministic reconstruction algorithm for such formulas. Our results are obtained by improving and extending the analysis of the algorithm of [Shpilka-Volkovich, 2015]

Subject Classification

Keywords
  • Derandomization
  • Read-Once Formulas
  • Identity Testing
  • Arithmetic Circuits
  • Reconstruction

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. M. Agrawal. Proving lower bounds via pseudo-random generators. In Proceedings of the 25th FSTTCS, volume 3821 of LNCS, pages 92-105, 2005. Google Scholar
  2. M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathematics, 160(2):781-793, 2004. Google Scholar
  3. M. Agrawal, C. Saha, R. Saptharishi, and N. Saxena. Jacobian hits circuits: Hitting-sets, lower bounds for depth-d occur-k formulas & depth-3 transcendence degree-k circuits. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC), pages 599-614, 2012. Google Scholar
  4. M. Agrawal, C. Saha, and N. Saxena. Quasi-polynomial hitting-set for set-depth- formulas. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC), pages 321-330, 2013. Google Scholar
  5. N. Alon. Combinatorial nullstellensatz. Combinatorics, Probability and Computing, 8:7-29, 1999. Google Scholar
  6. M. Anderson, M. A. Forbes, R. Saptharishi, A. Shpilka, and B. L. Volk. Identity Testing and Lower Bounds for Read-k Oblivious Algebraic Branching Programs. In 31st Conference on Computational Complexity (CCC 2016), volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages 30:1-30:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.CCC.2016.30.
  7. M. Anderson, D. van Melkebeek, and I. Volkovich. Derandomizing polynomial identity testing for multilinear constant-read formulae. Computational Complexity, 24(4):695-776, 2015. Google Scholar
  8. D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formulas with queries. J. ACM, 40(1):185-210, 1993. Google Scholar
  9. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of approximation problems. JACM, 45(3):501-555, 1998. Google Scholar
  10. S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. JACM, 45(1):70-122, 1998. Google Scholar
  11. V. Arvind and P. Mukhopadhyay. The monomial ideal membership problem and polynomial identity testing. Information and Computation, 208(4):351-363, 2010. Google Scholar
  12. M. Beecken, J. Mittmann, and N. Saxena. Algebraic independence and blackbox identity testing. In Automata, Languages and Programming, 38th International Colloquium (ICALP), pages 137-148, 2011. Google Scholar
  13. M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynominal interpolation. In Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC), pages 301-309, 1988. Google Scholar
  14. D. Bshouty and N. H. Bshouty. On interpolating arithmetic read-once formulas with exponentiation. JCSS, 56(1):112-124, 1998. Google Scholar
  15. N. H. Bshouty and R. Cleve. Interpolating arithmetic read-once formulas in parallel. SIAM J. on Computing, 27(2):401-413, 1998. Google Scholar
  16. N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning arithmetic read-once formulas. SIAM J. on Computing, 24(4):706-735, 1995. Google Scholar
  17. N. H. Bshouty, T. R. Hancock, and L. Hellerstein. Learning boolean read-once formulas with arbitrary symmetric and constant fan-in gates. JCSS, 50:521-542, 1995. Google Scholar
  18. R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing. Inf. Process. Lett., 7(4):193-195, 1978. Google Scholar
  19. Z. Dvir and A. Shpilka. Locally decodable codes with 2 queries and polynomial identity testing for depth 3 circuits. SIAM J. on Computing, 36(5):1404-1434, 2006. Google Scholar
  20. S. A. Fenner, R. Gurjar, and T. Thierauf. Bipartite perfect matching is in quasi-nc. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC, pages 754-763, 2016. URL: http://dx.doi.org/10.1145/2897518.2897564.
  21. M. Forbes, R. Saptharishi, and A. Shpilka. Pseudorandomness for multilinear read-once algebraic branching programs, in any order. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC), pages 867-875, 2014. Full version at https://eccc.weizmann.ac.il/report/2013/132/. URL: http://dx.doi.org/10.1145/2591796.2591816.
  22. M. Forbes and A. Shpilka. Quasipolynomial-time identity testing of non-commutative and read-once oblivious algebraic branching programs. Electronic Colloquium on Computational Complexity (ECCC), 19:115, 2012. Google Scholar
  23. M. Forbes and A. Shpilka. Explicit noether normalization for simultaneous conjugation via polynomial identity testing. In APPROX-RANDOM, pages 527-542, 2013. Google Scholar
  24. M. Forbes and A. Shpilka. Quasipolynomial-time identity testing of non-commutative and read-once oblivious algebraic branching programs. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 243-252, 2013. Full version at https://eccc.weizmann.ac.il/report/2012/115/. URL: http://dx.doi.org/10.1109/FOCS.2013.34.
  25. M. A. Forbes, A. Shpilka, I. Tzameret, and A. Wigderson. Proof complexity lower bounds from algebraic circuit complexity. CoRR, abs/1606.05050, 2016. URL: http://arxiv.org/abs/1606.05050.
  26. A. Gupta. Algebraic geometric techniques for depth-4 PIT & sylvester-gallai conjectures for varieties. Electronic Colloquium on Computational Complexity (ECCC), 21:130, 2014. URL: https://eccc.weizmann.ac.il/report/2014/130/.
  27. R. Gurjar, A. Korwar, and N. Saxena. Identity Testing for Constant-Width, and Commutative, Read-Once Oblivious ABPs. In 31st Conference on Computational Complexity (CCC 2016), volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages 29:1-29:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.CCC.2016.29.
  28. R. Gurjar, A. Korwar, N. Saxena, and T. Thierauf. Deterministic Identity Testing for Sum of Read-once Oblivious Arithmetic Branching Programs. In 30th Conference on Computational Complexity (CCC 2015), volume 33 of Leibniz International Proceedings in Informatics (LIPIcs), pages 323-346. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. URL: http://dx.doi.org/10.4230/LIPIcs.CCC.2015.323.
  29. T. R. Hancock and L. Hellerstein. Learning read-once formulas over fields and extended bases. In Proceedings of the 4th Annual Workshop on Computational Learning Theory (COLT), pages 326-336, 1991. Google Scholar
  30. J. Heintz and C. P. Schnorr. Testing polynomials which are easy to compute (extended abstract). In Proceedings of the 12th Annual ACM Symposium on Theory of Computing (STOC), pages 262-272, 1980. Google Scholar
  31. M. Karchmer, N. Linial, I. Newman, M. E. Saks, and A. Wigderson. Combinatorial characterization of read-once formulae. Discrete Mathematics, 114(1-3):275-282, 1993. Google Scholar
  32. Z. S. Karnin, P. Mukhopadhyay, A. Shpilka, and I. Volkovich. Deterministic identity testing of depth 4 multilinear circuits with bounded top fan-in. SIAM J. on Computing, 42(6):2114-2131, 2013. Google Scholar
  33. Z. S. Karnin and A. Shpilka. Black box polynomial identity testing of generalized depth-3 arithmetic circuits with bounded top fan-in. Combinatorica, 31(3):333-364, 2011. URL: http://dx.doi.org/10.1007/s00493-011-2537-3.
  34. N. Kayal and S. Saraf. Blackbox polynomial identity testing for depth 3 circuits. In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 198-207, 2009. Full version at URL: https://eccc.weizmann.ac.il/report/2009/032/.
  35. N. Kayal and N. Saxena. Polynomial identity testing for depth 3 circuits. Computational Complexity, 16(2):115-138, 2007. Google Scholar
  36. A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate polynomials. In Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC), pages 216-223, 2001. Google Scholar
  37. M. Kumar and S. Saraf. Arithmetic Circuits with Locally Low Algebraic Rank. In 31st Conference on Computational Complexity (CCC 2016), volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages 34:1-34:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.CCC.2016.34.
  38. M. Kumar and S. Saraf. Sums of Products of Polynomials in Few Variables: Lower Bounds and Polynomial Identity Testing. In 31st Conference on Computational Complexity, CCC, volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1-35:29. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.CCC.2016.35.
  39. R. J. Lipton and N. K. Vishnoi. Deterministic identity testing for multivariate polynomials. In Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 756-760, 2003. Google Scholar
  40. L. Lovasz. On determinants, matchings, and random algorithms. In L. Budach, editor, Fundamentals of Computing Theory. Akademia-Verlag, 1979. Google Scholar
  41. C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. JACM, 39(4):859-868, 1992. Google Scholar
  42. P. Mukhopadhyay. Depth-4 identity testing and noether’s normalization lemma. Electronic Colloquium on Computational Complexity (ECCC), 2015. Google Scholar
  43. K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion. Combinatorica, 7(1):105-113, 1987. Google Scholar
  44. N. Saxena. Diagonal circuit identity testing and lower bounds. In Automata, Languages and Programming, 35th International Colloquium, pages 60-71, 2008. Full version at URL: https://eccc.weizmann.ac.il/eccc-reports/2007/TR07-124/.
  45. N. Saxena and C. Seshadhri. From Sylvester-Gallai Configurations to Rank Bounds: Improved Black-Box Identity Test for Deph-3 Circuits. In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 21-30, 2010. Google Scholar
  46. N. Saxena and C. Seshadhri. An almost optimal rank bound for depth-3 identities. SIAM J. Comput., 40(1):200-224, 2011. Google Scholar
  47. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27(4):701-717, 1980. Google Scholar
  48. A. Shamir. IP=PSPACE. In Proceedings of the Thirty First Annual Symposium on Foundations of Computer Science, pages 11-15, 1990. Google Scholar
  49. A. Shpilka and I. Volkovich. Read-once polynomial identity testing. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pages 507-516, 2008. URL: http://dx.doi.org/10.1145/1374376.1374448.
  50. A. Shpilka and I. Volkovich. Improved polynomial identity testing for read-once formulas. In APPROX-RANDOM, pages 700-713, 2009. Full version at URL: https://eccc.weizmann.ac.il/report/2010/011/.
  51. A. Shpilka and I. Volkovich. On reconstruction and testing of read-once formulas. Theory of Computing, 10:465-514, 2014. Google Scholar
  52. A. Shpilka and I. Volkovich. Read-once polynomial identity testing. Computational Complexity, 24(3):477-532, 2015. Google Scholar
  53. A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207-388, 2010. Google Scholar
  54. I. Volkovich. Characterizing arithmetic read-once formulae. ACM Transactions on Computation Theory (ToCT), 8(1):2, 2016. URL: http://dx.doi.org/10.1145/2858783.
  55. R. Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, pages 216-226, 1979. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail