We study entropy flattening: Given a circuit C_X implicitly describing an n-bit source X (namely, X is the output of C_X on a uniform random input), construct another circuit C_Y describing a source Y such that (1) source Y is nearly flat (uniform on its support), and (2) the Shannon entropy of Y is monotonically related to that of X. The standard solution is to have C_Y evaluate C_X altogether Theta(n^2) times on independent inputs and concatenate the results (correctness follows from the asymptotic equipartition property). In this paper, we show that this is optimal among black-box constructions: Any circuit C_Y for entropy flattening that repeatedly queries C_X as an oracle requires Omega(n^2) queries. Entropy flattening is a component used in the constructions of pseudorandom generators and other cryptographic primitives from one-way functions [Johan Håstad et al., 1999; John Rompel, 1990; Thomas Holenstein, 2006; Iftach Haitner et al., 2006; Iftach Haitner et al., 2009; Iftach Haitner et al., 2013; Iftach Haitner et al., 2010; Salil P. Vadhan and Colin Jia Zheng, 2012]. It is also used in reductions between problems complete for statistical zero-knowledge [Tatsuaki Okamoto, 2000; Amit Sahai and Salil P. Vadhan, 1997; Oded Goldreich et al., 1999; Vadhan, 1999]. The Theta(n^2) query complexity is often the main efficiency bottleneck. Our lower bound can be viewed as a step towards proving that the current best construction of pseudorandom generator from arbitrary one-way functions by Vadhan and Zheng (STOC 2012) has optimal efficiency.
@InProceedings{chen_et_al:LIPIcs.CCC.2018.23, author = {Chen, Yi-Hsiu and G\"{o}\"{o}s, Mika and Vadhan, Salil P. and Zhang, Jiapeng}, title = {{A Tight Lower Bound for Entropy Flattening}}, booktitle = {33rd Computational Complexity Conference (CCC 2018)}, pages = {23:1--23:28}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-069-9}, ISSN = {1868-8969}, year = {2018}, volume = {102}, editor = {Servedio, Rocco A.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2018.23}, URN = {urn:nbn:de:0030-drops-88669}, doi = {10.4230/LIPIcs.CCC.2018.23}, annote = {Keywords: Entropy, One-way function} }
Feedback for Dagstuhl Publishing