NP-hardness of Minimum Circuit Size Problem for OR-AND-MOD Circuits

Authors Shuichi Hirahara, Igor C. Oliveira, Rahul Santhanam



PDF
Thumbnail PDF

File

LIPIcs.CCC.2018.5.pdf
  • Filesize: 0.68 MB
  • 31 pages

Document Identifiers

Author Details

Shuichi Hirahara
  • Department of Computer Science, The University of Tokyo, Tokyo, Japan
Igor C. Oliveira
  • Department of Computer Science, University of Oxford, Oxford, United Kingdom
Rahul Santhanam
  • Department of Computer Science, University of Oxford, Oxford, United Kingdom

Cite AsGet BibTex

Shuichi Hirahara, Igor C. Oliveira, and Rahul Santhanam. NP-hardness of Minimum Circuit Size Problem for OR-AND-MOD Circuits. In 33rd Computational Complexity Conference (CCC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 102, pp. 5:1-5:31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.CCC.2018.5

Abstract

The Minimum Circuit Size Problem (MCSP) asks for the size of the smallest boolean circuit that computes a given truth table. It is a prominent problem in NP that is believed to be hard, but for which no proof of NP-hardness has been found. A significant number of works have demonstrated the central role of this problem and its variations in diverse areas such as cryptography, derandomization, proof complexity, learning theory, and circuit lower bounds. The NP-hardness of computing the minimum numbers of terms in a DNF formula consistent with a given truth table was proved by W. Masek [William J. Masek, 1979] in 1979. In this work, we make the first progress in showing NP-hardness for more expressive classes of circuits, and establish an analogous result for the MCSP problem for depth-3 circuits of the form OR-AND-MOD_2. Our techniques extend to an NP-hardness result for MOD_m gates at the bottom layer under inputs from (Z / m Z)^n.

Subject Classification

ACM Subject Classification
  • Theory of computation → Problems, reductions and completeness
Keywords
  • NP-hardness
  • Minimum Circuit Size Problem
  • depth-3 circuits

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon Rosen. Candidate weak pseudorandom functions in AC^0 ∘ MOD_2. In Moni Naor, editor, Innovations in Theoretical Computer Science, ITCS'14, Princeton, NJ, USA, January 12-14, 2014, pages 251-260. ACM, 2014. URL: http://dx.doi.org/10.1145/2554797.2554821.
  2. Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger. Power from random strings. SIAM J. Comput., 35(6):1467-1493, 2006. URL: http://dx.doi.org/10.1137/050628994.
  3. Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical Foundations of Computer Science 2014 - 39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part II, volume 8635 of Lecture Notes in Computer Science, pages 25-32. Springer, 2014. URL: http://dx.doi.org/10.1007/978-3-662-44465-8_3.
  4. Eric Allender, Joshua A. Grochow, and Cristopher Moore. Graph isomorphism and circuit size. CoRR, abs/1511.08189, 2015. URL: http://arxiv.org/abs/1511.08189.
  5. Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks. Minimizing disjunctive normal form formulas and AC0 circuits given a truth table. SIAM J. Comput., 38(1):63-84, 2008. URL: http://dblp.uni-trier.de/db/journals/siamcomp/siamcomp38.html#AllenderHMPS08.
  6. Eric Allender and Shuichi Hirahara. New insights on the (non-)hardness of circuit minimization and related problems. In Kim G. Larsen, Hans L. Bodlaender, and Jean-François Raskin, editors, 42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, volume 83 of LIPIcs, pages 54:1-54:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. URL: http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.54.
  7. Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle circuit size problem. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of LIPIcs, pages 21-33. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://dx.doi.org/10.4230/LIPIcs.STACS.2015.21.
  8. Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy. The pervasive reach of resource-bounded kolmogorov complexity in computational complexity theory. J. Comput. Syst. Sci., 77(1):14-40, 2011. URL: http://dx.doi.org/10.1016/j.jcss.2010.06.004.
  9. Yossi Azar, Rajeev Motwani, and Joseph Naor. Approximating probability distributions using small sample spaces. Combinatorica, 18(2):151-171, 1998. URL: http://dx.doi.org/10.1007/PL00009813.
  10. Andrej Bogdanov and Alon Rosen. Pseudorandom functions: Three decades later. In Yehuda Lindell, editor, Tutorials on the Foundations of Cryptography., pages 79-158. Springer International Publishing, 2017. URL: http://dx.doi.org/10.1007/978-3-319-57048-8_3.
  11. Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Learning algorithms from natural proofs. In Ran Raz, editor, 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 10:1-10:24. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.CCC.2016.10.
  12. Arkadev Chattopadhyay and Shachar Lovett. Linear systems over finite abelian groups. In Proceedings of the 26th Annual IEEE Conference on Computational Complexity, CCC 2011, San Jose, California, June 8-10, 2011, pages 300-308. IEEE Computer Society, 2011. URL: http://dx.doi.org/10.1109/CCC.2011.25.
  13. Arkadev Chattopadhyay and Avi Wigderson. Linear systems over composite moduli. In 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages 43-52. IEEE Computer Society, 2009. URL: http://dx.doi.org/10.1109/FOCS.2009.17.
  14. Gil Cohen and Igor Shinkar. The complexity of DNF of parities. In Madhu Sudan, editor, Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages 47-58. ACM, 2016. URL: http://dx.doi.org/10.1145/2840728.2840734.
  15. Sebastian Czort. The complexity of minimizing disjunctive normal form formulas. Master’s Thesis, University of Aarhus, 1999. Google Scholar
  16. Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. Improved pseudorandom generators for depth 2 circuits. Electronic Colloquium on Computational Complexity (ECCC), 16:141, 2009. URL: http://eccc.hpi-web.de/report/2009/141.
  17. Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634-652, 1998. Google Scholar
  18. Vitaly Feldman. Hardness of approximate two-level logic minimization and PAC learning with membership queries. J. Comput. Syst. Sci., 75(1):13-26, 2009. URL: http://dx.doi.org/10.1016/j.jcss.2008.07.007.
  19. M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. Google Scholar
  20. Chris Godsil. Double orthogonal complement of a finite module. MathOverflow (Retrieved 19-01-2018). URL: https://mathoverflow.net/q/75268.
  21. Parikshit Gopalan, Daniel M. Kane, and Raghu Meka. Pseudorandomness via the discrete fourier transform. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 903-922. IEEE Computer Society, 2015. URL: http://dx.doi.org/10.1109/FOCS.2015.60.
  22. Vince Grolmusz. A lower bound for depth-3 circuits with MOD m gates. Inf. Process. Lett., 67(2):87-90, 1998. URL: http://dx.doi.org/10.1016/S0020-0190(98)00093-3.
  23. Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as oracle. In Ran Raz, editor, 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 18:1-18:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. URL: http://dx.doi.org/10.4230/LIPIcs.CCC.2016.18.
  24. John M. Hitchcock and Aduri Pavan. On the np-completeness of the minimum circuit size problem. In Prahladh Harsha and G. Ramalingam, editors, 35th IARCS Annual Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2015, December 16-18, 2015, Bangalore, India, volume 45 of LIPIcs, pages 236-245. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.236.
  25. Stasys Jukna. On graph complexity. Combinatorics, Probability & Computing, 15(6):855-876, 2006. URL: http://dx.doi.org/10.1017/S0963548306007620.
  26. Stasys Jukna. Boolean Function Complexity - Advances and Frontiers. Springer, 2012. Google Scholar
  27. Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In F. Frances Yao and Eugene M. Luks, editors, Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 73-79. ACM, 2000. URL: http://dx.doi.org/10.1145/335305.335314.
  28. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York., The IBM Research Symposia Series, pages 85-103. Plenum Press, New York, 1972. URL: http://www.cs.berkeley.edu/~luca/cs172/karp.pdf.
  29. Subhash Khot and Rishi Saket. Hardness of minimizing and learning DNF expressions. In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 231-240. IEEE Computer Society, 2008. URL: http://dx.doi.org/10.1109/FOCS.2008.37.
  30. Jan Krajícek. Forcing with Random Variables and Proof Complexity, volume 382 of London Mathematical Society lecture note series. Cambridge University Press, 2011. URL: http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/forcing-random-variables-and-proof-complexity?format=PB.
  31. William J. Masek. Some NP-complete set covering problems. Unpublished Manuscript, 1979. Google Scholar
  32. Cody D. Murray and Richard Ryan Williams. On the (non) np-hardness of computing circuit complexity. In David Zuckerman, editor, 30th Conference on Computational Complexity, CCC 2015, June 17-19, 2015, Portland, Oregon, USA, volume 33 of LIPIcs, pages 365-380. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://dx.doi.org/10.4230/LIPIcs.CCC.2015.365.
  33. Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and applications. SIAM J. Comput., 22(4):838-856, 1993. URL: http://dx.doi.org/10.1137/0222053.
  34. Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and applications. SIAM J. Comput., 22(4):838-856, 1993. URL: http://dblp.uni-trier.de/db/journals/siamcomp/siamcomp22.html#NaorN93.
  35. Ryan O'Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. URL: http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions.
  36. Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between learning algorithms, circuit lower bounds, and pseudorandomness. In Ryan O'Donnell, editor, 32nd Computational Complexity Conference, CCC 2017, July 6-9, 2017, Riga, Latvia, volume 79 of LIPIcs, pages 18:1-18:49. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. URL: http://dx.doi.org/10.4230/LIPIcs.CCC.2017.18.
  37. Ramamohan Paturi, Michael E. Saks, and Francis Zane. Exponential lower bounds for depth three boolean circuits. Computational Complexity, 9(1):1-15, 2000. URL: http://dx.doi.org/10.1007/PL00001598.
  38. Leonard Pitt and Leslie G. Valiant. Computational limitations on learning from examples. J. ACM, 35(4):965-984, 1988. URL: http://dx.doi.org/10.1145/48014.63140.
  39. Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24-35, 1997. URL: http://dx.doi.org/10.1006/jcss.1997.1494.
  40. Petr Slavík. A tight analysis of the greedy algorithm for set cover. In Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages 435-441. ACM, 1996. URL: http://dx.doi.org/10.1145/237814.237991.
  41. Boris A. Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches) algorithms. IEEE Annals of the History of Computing, 6(4):384-400, 1984. URL: http://dx.doi.org/10.1109/MAHC.1984.10036.
  42. Luca Trevisan. Non-approximability results for optimization problems on bounded degree instances. In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 453-461. ACM, 2001. URL: http://dx.doi.org/10.1145/380752.380839.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail