Near-Optimal Pseudorandom Generators for Constant-Depth Read-Once Formulas

Authors Dean Doron , Pooya Hatami , William M. Hoza



PDF
Thumbnail PDF

File

LIPIcs.CCC.2019.16.pdf
  • Filesize: 0.68 MB
  • 34 pages

Document Identifiers

Author Details

Dean Doron
  • Department of Computer Science, University of Texas at Austin, USA
Pooya Hatami
  • Department of Computer Science, University of Texas at Austin, USA
William M. Hoza
  • Department of Computer Science, University of Texas at Austin, USA

Acknowledgements

We thank David Zuckerman for very helpful discussions. The first author would also like to thank Gil Cohen, Chin Ho Lee and Amnon Ta-Shma for insightful conversations about the Forbes-Kelley result [Michael A. Forbes and Zander Kelley, 2018].

Cite AsGet BibTex

Dean Doron, Pooya Hatami, and William M. Hoza. Near-Optimal Pseudorandom Generators for Constant-Depth Read-Once Formulas. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 16:1-16:34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
https://doi.org/10.4230/LIPIcs.CCC.2019.16

Abstract

We give an explicit pseudorandom generator (PRG) for read-once AC^0, i.e., constant-depth read-once formulas over the basis {wedge, vee, neg} with unbounded fan-in. The seed length of our PRG is O~(log(n/epsilon)). Previously, PRGs with near-optimal seed length were known only for the depth-2 case [Gopalan et al., 2012]. For a constant depth d > 2, the best prior PRG is a recent construction by Forbes and Kelley with seed length O~(log^2 n + log n log(1/epsilon)) for the more general model of constant-width read-once branching programs with arbitrary variable order [Michael A. Forbes and Zander Kelley, 2018]. Looking beyond read-once AC^0, we also show that our PRG fools read-once AC^0[oplus] with seed length O~(t + log(n/epsilon)), where t is the number of parity gates in the formula. Our construction follows Ajtai and Wigderson’s approach of iterated pseudorandom restrictions [Ajtai and Wigderson, 1989]. We assume by recursion that we already have a PRG for depth-d AC^0 formulas. To fool depth-(d + 1) AC^0 formulas, we use the given PRG, combined with a small-bias distribution and almost k-wise independence, to sample a pseudorandom restriction. The analysis of Forbes and Kelley [Michael A. Forbes and Zander Kelley, 2018] shows that our restriction approximately preserves the expectation of the formula. The crux of our work is showing that after poly(log log n) independent applications of our pseudorandom restriction, the formula simplifies in the sense that every gate other than the output has only polylog n remaining children. Finally, as the last step, we use a recent PRG by Meka, Reingold, and Tal [Meka et al., 2019] to fool this simpler formula.

Subject Classification

ACM Subject Classification
  • Theory of computation → Pseudorandomness and derandomization
Keywords
  • Pseudorandom generators
  • Constant-depth formulas
  • Explicit constructions

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Miklos Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant depth circuits. Advances in Computing Research, 5(199-222):1, 1989. Google Scholar
  2. Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple Constructions of Almost k-wise Independent Random Variables. Random Structures & Algorithms, 3(3):289-304, 1992. Google Scholar
  3. Louay M. J. Bazzi. Polylogarithmic independence can fool DNF formulas. SIAM J. Comput., 38(6):2220-2272, 2009. URL: https://doi.org/10.1137/070691954.
  4. Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehudayoff. Pseudorandomness for width-2 branching programs. Theory of Computing, 9:283-292, 2013. URL: https://doi.org/10.4086/toc.2013.v009a007.
  5. Andrej Bogdanov, Periklis A Papakonstaninou, and Andrew Wan. Pseudorandomness for read-once formulas. In Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2011), pages 240-246. IEEE, 2011. Google Scholar
  6. Mark Braverman. Poly-logarithmic Independence Fools \bfAC^0 Circuits. In Proceedings of the 24th Annual IEEE Conference on Computational Complexity (CCC 2009), pages 3-8. IEEE, 2009. Google Scholar
  7. Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom Generators for Regular Branching Programs. SIAM Journal on Computing, 43(3):973-986, 2014. Google Scholar
  8. Suresh Chari, Pankaj Rohatgi, and Aravind Srinivasan. Improved algorithms via approximations of probability distributions. J. Comput. System Sci., 61(1):81-107, 2000. URL: https://doi.org/10.1006/jcss.1999.1695.
  9. Arkadev Chattopadhyay and Kristoffer Arnsfelt Hansen. Lower bounds for circuits with few modular and symmetric gates. In Automata, languages and programming, volume 3580 of Lecture Notes in Comput. Sci., pages 994-1005. Springer, Berlin, 2005. URL: https://doi.org/10.1007/11523468_80.
  10. Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudorandom generators from polarizing random walks. In Proceedings of the 33rd Annual Computational Complexity Conference (CCC 2018), volume 102 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 1, 21. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018. Google Scholar
  11. Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Improved Pseudorandomness for Unordered Branching Programs Through Local Monotonicity. In Proceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC 2018), pages 363-375, New York, NY, USA, 2018. ACM. URL: https://doi.org/10.1145/3188745.3188800.
  12. Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and resilient functions. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, pages 670-683. ACM, 2016. Google Scholar
  13. Sitan Chen, Thomas Steinke, and Salil Vadhan. Pseudorandomness for read-once, constant-depth circuits. arXiv preprint, 2015. URL: http://arxiv.org/abs/1504.04675.
  14. Anindya De. Pseudorandomness for permutation and regular branching programs. In Proceedings of the 26th Annual IEEE 26th Annual Conference on Computational Complexity (CCC 2011), pages 221-231. IEEE, 2011. Google Scholar
  15. Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. Improved pseudorandom generators for depth 2 circuits. In Approximation, randomization, and combinatorial optimization, volume 6302 of Lecture Notes in Comput. Sci., pages 504-517. Springer, Berlin, 2010. URL: https://doi.org/10.1007/978-3-642-15369-3_38.
  16. Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. On beating the hybrid argument. Theory Comput., 9:809-843, 2013. URL: https://doi.org/10.4086/toc.2013.v009a026.
  17. Michael A. Forbes and Zander Kelley. Pseudorandom Generators for Read-Once Branching Programs, in any Order. In Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2018). IEEE, 2018. Google Scholar
  18. Merrick Furst, James B Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time hierarchy. Mathematical systems theory, 17(1):13-27, 1984. Google Scholar
  19. Dmitry Gavinsky, Shachar Lovett, and Srikanth Srinivasan. Pseudorandom Generators for Read-Once ACC⁰. In Proceedings of the 27th Annual IEEE Conference on Computational Complexity (CCC 2012), pages 287-297, 2012. Google Scholar
  20. Oded Goldreich and Avi Widgerson. On derandomizing algorithms that err extremely rarely. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC 2014), pages 109-118. ACM, New York, 2014. Google Scholar
  21. Parikshit Gopalan, Raghu Meka, and Omer Reingold. DNF sparsification and a faster deterministic counting algorithm. Comput. Complexity, 22(2):275-310, 2013. URL: https://doi.org/10.1007/s00037-013-0068-6.
  22. Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil Vadhan. Better pseudorandom generators from milder pseudorandom restrictions. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2012), pages 120-129. IEEE, 2012. Google Scholar
  23. Elad Haramaty, Chin Ho Lee, and Emanuele Viola. Bounded independence plus noise fools products. SIAM J. Comput., 47(2):493-523, 2018. URL: https://doi.org/10.1137/17M1129088.
  24. Prahladh Harsha and Srikanth Srinivasan. On polynomial approximations to AC⁰. Random Structures & Algorithms, 54(2):289-303, 2019. URL: https://doi.org/10.1002/rsa.20786.
  25. Johan Haståd. Almost optimal lower bounds for small depth circuits. In Proceedings of the eighteenth Annual ACM Symposium on Theory of Computing (STOC 1986), pages 6-20. ACM, 1986. Google Scholar
  26. Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from shrinkage. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2012), pages 111-119. IEEE, 2012. Google Scholar
  27. Adam R. Klivans, Homin Lee, and Andrew Wan. Mansour’s Conjecture is True for Random DNF Formulas. In Proceedings of the 23rd Annual Conference on Learning Theory (COLT 2010), 2010. Google Scholar
  28. Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. Pseudorandom generators for group products. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC 2011), pages 263-272. ACM, New York, 2011. URL: https://doi.org/10.1145/1993636.1993672.
  29. Nathan Linial and Noam Nisan. Approximate inclusion-exclusion. Combinatorica, 10(4):349-365, 1990. Google Scholar
  30. Shachar Lovett and Srikanth Srinivasan. Correlation bounds for poly-size \bfAC^0 circuits with n^1-o(1) symmetric gates. In Approximation, randomization, and combinatorial optimization, volume 6845 of Lecture Notes in Comput. Sci., pages 640-651. Springer, Heidelberg, 2011. URL: https://doi.org/10.1007/978-3-642-22935-0_54.
  31. Michael Luby, Boban Velickovic, and Avi Wigderson. Deterministic approximate counting of depth-2 circuits. In Proceedings of the 2nd Annual Israel Symposium on Theory and Computing Systems (ISTCS 1993), pages 18-24. IEEE, 1993. Google Scholar
  32. Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom Generators for Width-3 Branching Programs. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC 2019), 2019. To appear. Google Scholar
  33. Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and applications. SIAM Journal on Computing, 22(4):838-856, 1993. Google Scholar
  34. Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63-70, 1991. URL: https://doi.org/10.1007/BF01375474.
  35. Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica, 12(4):449-461, 1992. Google Scholar
  36. Alexander Razborov. A simple proof of Bazzi’s theorem. ACM Transactions on Computation Theory (TOCT), 1(1):3, 2009. Google Scholar
  37. Omer Reingold, Thomas Steinke, and Salil Vadhan. Pseudorandomness for regular branching programs via Fourier analysis. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 655-670. Springer, 2013. Google Scholar
  38. Rocco A. Servedio and Li-Yang Tan. Improved pseudorandom generators from pseudorandom multi-switching lemmas. arXiv preprint, 2018. URL: http://arxiv.org/abs/1801.03590.
  39. Rocco A. Servedio and Li-Yang Tan. Pseudorandomness for read-k DNF formulas. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), pages 621-638, 2019. URL: https://doi.org/10.1137/1.9781611975482.39.
  40. Jiří Šíma and Stanislav Žák. Almost k-wise independent sets establish hitting sets for width-3 1-branching programs. In Computer science - theory and applications, volume 6651 of Lecture Notes in Comput. Sci., pages 120-133. Springer, Heidelberg, 2011. URL: https://doi.org/10.1007/978-3-642-20712-9_10.
  41. Thomas Steinke. Pseudorandomness for Permutation Branching Programs Without the Group Theory. In Electronic Colloquium on Computational Complexity (ECCC), volume 19, 2012. Report No. 83. Google Scholar
  42. Avishay Tal. Tight Bounds on the Fourier Spectrum of \bfAC^0. In Ryan O'Donnell, editor, Proceedings of the 32nd Annual Computational Complexity Conference (CCC 2017), volume 79 of Leibniz International Proceedings in Informatics (LIPIcs), pages 15:1-15:31, Dagstuhl, Germany, 2017. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.CCC.2017.15.
  43. Luca Trevisan and Tongke Xue. A derandomized switching lemma and an improved derandomization of \bfAC^0. In Proceedings of the 28th Annual IEEE Conference on Computational Complexity (CCC 2013), pages 242-247. IEEE, 2013. Google Scholar
  44. Emanuele Viola. Pseudorandom bits for constant-depth circuits with few arbitrary symmetric gates. SIAM J. Comput., 36(5):1387-1403, 2006/07. URL: https://doi.org/10.1137/050640941.