Polynomial Time Decidability of Weighted Synchronization under Partial Observability

Authors Jan Kretinsky, Kim Guldstrand Larsen, Simon Laursen, Jiri Srba



PDF
Thumbnail PDF

File

LIPIcs.CONCUR.2015.142.pdf
  • Filesize: 456 kB
  • 13 pages

Document Identifiers

Author Details

Jan Kretinsky
Kim Guldstrand Larsen
Simon Laursen
Jiri Srba

Cite AsGet BibTex

Jan Kretinsky, Kim Guldstrand Larsen, Simon Laursen, and Jiri Srba. Polynomial Time Decidability of Weighted Synchronization under Partial Observability. In 26th International Conference on Concurrency Theory (CONCUR 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 42, pp. 142-154, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)
https://doi.org/10.4230/LIPIcs.CONCUR.2015.142

Abstract

We consider weighted automata with both positive and negative integer weights on edges and study the problem of synchronization using adaptive strategies that may only observe whether the current weight-level is negative or nonnegative. We show that the synchronization problem is decidable in polynomial time for deterministic weighted automata.
Keywords
  • weighted automata
  • partial observability
  • synchronization
  • complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail