Priority Downward Closures

Authors Ashwani Anand, Georg Zetzsche



PDF
Thumbnail PDF

File

LIPIcs.CONCUR.2023.39.pdf
  • Filesize: 0.77 MB
  • 18 pages

Document Identifiers

Author Details

Ashwani Anand
  • Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
Georg Zetzsche
  • Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Acknowledgements

The authors are grateful to Yousef Shakiba for discussions on the block downward closure of regular languages.

Cite AsGet BibTex

Ashwani Anand and Georg Zetzsche. Priority Downward Closures. In 34th International Conference on Concurrency Theory (CONCUR 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 279, pp. 39:1-39:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.CONCUR.2023.39

Abstract

When a system sends messages through a lossy channel, then the language encoding all sequences of messages can be abstracted by its downward closure, i.e. the set of all (not necessarily contiguous) subwords. This is useful because even if the system has infinitely many states, its downward closure is a regular language. However, if the channel has congestion control based on priorities assigned to the messages, then we need a finer abstraction: The downward closure with respect to the priority embedding. As for subword-based downward closures, one can also show that these priority downward closures are always regular. While computing finite automata for the subword-based downward closure is well understood, nothing is known in the case of priorities. We initiate the study of this problem and provide algorithms to compute priority downward closures for regular languages, one-counter languages, and context-free languages.

Subject Classification

ACM Subject Classification
  • Theory of computation → Models of computation
Keywords
  • downward closure
  • priority order
  • pushdown automata
  • non-deterministic finite automata
  • abstraction
  • computability

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Parosh Aziz Abdulla, Luc Boasson, and Ahmed Bouajjani. Effective lossy queue languages. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, Automata, Languages and Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 639-651. Springer, 2001. URL: https://doi.org/10.1007/3-540-48224-5_53.
  2. Ashwani Anand and Georg Zetzsche. Priority downward closures, 2023. URL: https://arxiv.org/abs/2307.07460.
  3. Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-bounded analysis for concurrent programs with dynamic creation of threads. Log. Methods Comput. Sci., 7(4), 2011. URL: https://doi.org/10.2168/LMCS-7(4:4)2011.
  4. Mohamed Faouzi Atig, Dmitry Chistikov, Piotr Hofman, K. Narayan Kumar, Prakash Saivasan, and Georg Zetzsche. The complexity of regular abstractions of one-counter languages. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, pages 207-216, New York, NY, USA, 2016. Association for Computing Machinery. URL: https://doi.org/10.1145/2933575.2934561.
  5. Mohamed Faouzi Atig, Roland Meyer, Sebastian Muskalla, and Prakash Saivasan. On the upward/downward closures of Petri nets. In Kim G. Larsen, Hans L. Bodlaender, and Jean-François Raskin, editors, 42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, volume 83 of LIPIcs, pages 49:1-49:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.MFCS.2017.49.
  6. Georg Bachmeier, Michael Luttenberger, and Maximilian Schlund. Finite automata for the sub- and superword closure of cfls: Descriptional and computational complexity. In Adrian-Horia Dediu, Enrico Formenti, Carlos Martín-Vide, and Bianca Truthe, editors, Language and Automata Theory and Applications - 9th International Conference, LATA 2015, Nice, France, March 2-6, 2015, Proceedings, volume 8977 of Lecture Notes in Computer Science, pages 473-485. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-15579-1_37.
  7. Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. Context-bounded analysis of concurrent programs (invited talk). In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 3:1-3:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.3.
  8. Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. Context-bounded verification of context-free specifications. Proc. ACM Program. Lang., 7(POPL):2141-2170, 2023. URL: https://doi.org/10.1145/3571266.
  9. Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. Context-bounded verification of thread pools. Proc. ACM Program. Lang., 6(POPL):1-28, 2022. URL: https://doi.org/10.1145/3498678.
  10. J. Berstel. Transductions and Context-Free Languages. Vieweg+Teubner Verlag, 1979. Google Scholar
  11. S. Blake, D. Black, M. Carlson, Elwyn B. Davies, Zheng Wang, and Walter Weiss. An architecture for differentiated services. RFC, 2475:1-36, 1998. Google Scholar
  12. Lorenzo Clemente, Pawel Parys, Sylvain Salvati, and Igor Walukiewicz. The diagonal problem for higher-order recursion schemes is decidable. In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, New York, NY, USA, July 5-8, 2016, pages 96-105. ACM, 2016. URL: https://doi.org/10.1145/2933575.2934527.
  13. Bruno Courcelle. On constructing obstruction sets of words. Bulletin of the EATCS, 44:178-186, January 1991. Google Scholar
  14. Jean Goubault-Larrecq, Simon Halfon, Prateek Karandikar, K. Narayan Kumar, and Philippe Schnoebelen. The ideal approach to computing closed subsets in well-quasi-ordering. CoRR, abs/1904.10703, 2019. URL: https://arxiv.org/abs/1904.10703.
  15. Hermann Gruber, Markus Holzer, and Martin Kutrib. The size of higman–haines sets. Theoretical Computer Science, 387(2):167-176, 2007. Descriptional Complexity of Formal Systems. URL: https://doi.org/10.1016/j.tcs.2007.07.036.
  16. Christoph Haase, Sylvain Schmitz, and Philippe Schnoebelen. The Power of Priority Channel Systems. Logical Methods in Computer Science, Volume 10, Issue 4, December 2014. URL: https://doi.org/10.2168/LMCS-10(4:4)2014.
  17. Peter Habermehl, Roland Meyer, and Harro Wimmel. The downward-closure of Petri net languages. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, Automata, Languages and Programming, 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part II, volume 6199 of Lecture Notes in Computer Science, pages 466-477. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-14162-1_39.
  18. Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and downward closures of higher-order pushdown automata. In Rastislav Bodík and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20-22, 2016, pages 151-163. ACM, 2016. URL: https://doi.org/10.1145/2837614.2837627.
  19. Leonard H. Haines. On free monoids partially ordered by embedding. Journal of Combinatorial Theory, 6(1):94-98, 1969. URL: https://doi.org/10.1016/S0021-9800(69)80111-0.
  20. Graham Higman. Ordering by Divisibility in Abstract Algebras. Proceedings of the London Mathematical Society, s3-2(1):326-336, January 1952. URL: https://doi.org/10.1112/plms/s3-2.1.326.
  21. Jean-Yves Le Boudec. The asynchronous transfer mode: a tutorial. Computer Networks and ISDN Systems, 24(4):279-309, 1992. The ATM-Asynchronous Transfer Mode. URL: https://doi.org/10.1016/0169-7552(92)90114-6.
  22. Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. General decidability results for asynchronous shared-memory programs: Higher-order and beyond. Log. Methods Comput. Sci., 18(4), 2022. URL: https://doi.org/10.46298/lmcs-18(4:2)2022.
  23. Richard Mayr. Undecidable problems in unreliable computations. In Gaston H. Gonnet and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics, pages 377-386, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg. Google Scholar
  24. Jeffrey Shallit. A Second Course in Formal Languages and Automata Theory. Cambridge University Press, 2008. URL: https://doi.org/10.1017/CBO9780511808876.
  25. Salvatore La Torre, Anca Muscholl, and Igor Walukiewicz. Safety of parametrized asynchronous shared-memory systems is almost always decidable. In Luca Aceto and David de Frutos-Escrig, editors, 26th International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs, pages 72-84. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2015.72.
  26. Jan van Leeuwen. Effective constructions in well-partially-ordered free monoids. Discrete Mathematics, 21(3):237-252, 1978. Google Scholar
  27. Georg Zetzsche. An approach to computing downward closures. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume 9135 of Lecture Notes in Computer Science, pages 440-451. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-47666-6_35.
  28. Georg Zetzsche. Computing downward closures for stacked counter automata. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International Symposium on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching, Germany, volume 30 of LIPIcs, pages 743-756. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/10.4230/LIPIcs.STACS.2015.743.
  29. Georg Zetzsche. The complexity of downward closure comparisons. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 123:1-123:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.ICALP.2016.123.
  30. Georg Zetzsche. Separability by piecewise testable languages and downward closures beyond subwords. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 929-938. ACM, 2018. URL: https://doi.org/10.1145/3209108.3209201.