LIPIcs.CONCUR.2024.5.pdf
- Filesize: 1.13 MB
- 19 pages
The translation of Metric Interval Temporal Logic (MITL) to timed automata is a topic that has been extensively studied. A key challenge here is the conversion of future modalities into equivalent automata. Typical conversions equip the automata with a guess-and-check mechanism to ascertain the truth of future modalities. Guess-and-check can be naturally implemented via alternation. However, since timed automata tools do not handle alternation, existing methods perform an additional step of converting the alternating timed automata into timed automata. This "de-alternation" step proceeds by an intricate finite abstraction of the space of configurations of the alternating automaton. Recently, a model of generalized timed automata (GTA) has been proposed. The model comes with several powerful additional features, and yet, the best known zone-based reachability algorithms for timed automata have been extended to the GTA model, with the same complexity for all the zone operations. An attractive feature of GTAs is the presence of future clocks which act like timers that guess a time to an event and stay alive until a timeout. Future clocks seem to provide another natural way to implement the guess-and-check: start the future clock with a guessed time to an event and check its occurrence using a timeout. Indeed, using this feature, we provide a new concise translation from MITL to GTA. In particular, for the timed until modality, our translation offers an exponential improvement w.r.t. the state-of-the-art. Thanks to this conversion, MITL model checking reduces to checking liveness for GTAs. However, no liveness algorithm is known for GTAs. Due to the presence of future clocks, there is no finite time-abstract bisimulation (region equivalence) for GTAs, whereas liveness algorithms for timed automata crucially rely on the presence of the finite region equivalence. As our second contribution, we provide a new zone-based algorithm for checking Büchi non-emptiness in GTAs, which circumvents this fundamental challenge.
Feedback for Dagstuhl Publishing