A New Optimization Model for Multiple-Control Toffoli Quantum Circuit Design

Authors Jihye Jung , Kevin Dalmeijer , Pascal Van Hentenryck



PDF
Thumbnail PDF

File

LIPIcs.CP.2024.16.pdf
  • Filesize: 3.04 MB
  • 20 pages

Document Identifiers

Author Details

Jihye Jung
  • H. Milton Stewart School of Ind. and Syst. Engineering, Georgia Institute of Technology, Atlanta, GA, USA
Kevin Dalmeijer
  • H. Milton Stewart School of Ind. and Syst. Engineering, Georgia Institute of Technology, Atlanta, GA, USA
Pascal Van Hentenryck
  • H. Milton Stewart School of Ind. and Syst. Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Cite AsGet BibTex

Jihye Jung, Kevin Dalmeijer, and Pascal Van Hentenryck. A New Optimization Model for Multiple-Control Toffoli Quantum Circuit Design. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 16:1-16:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.CP.2024.16

Abstract

As quantum technology is advancing, the efficient design of quantum circuits has become an important area of research. This paper provides an introduction to the MCT quantum circuit design problem for reversible Boolean functions without assuming a prior background in quantum computing. While this is a well-studied problem, optimization models that minimize the true objective have only been explored recently. This paper introduces a new optimization model and symmetry-breaking constraints that improve solving time by up to two orders of magnitude compared to earlier work when a Constraint Programming solver is used. Experiments with up to seven qubits and using up to 15 quantum gates result in several new best-known circuits, obtained by any method, for well-known benchmarks. Finally, an extensive comparison with other approaches shows that optimization models may require more time but can provide superior circuits with optimality guarantees.

Subject Classification

ACM Subject Classification
  • Theory of computation → Constraint and logic programming
Keywords
  • Constraint Programming
  • Quantum Circuit Design
  • Reversible Circuits

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Nabila Abdessaied, Mathias Soeken, Robert Wille, and Rolf Drechsler. Exact Template Matching Using Boolean Satisfiability. In International Symposium on Multiple-Valued Logic, pages 328-333, 2013. URL: https://doi.org/10.1109/ismvl.2013.26.
  2. Mustapha Y. Abubakar, Low Tang Jung, Nordin Zakaria, Ahmed Younes, and Abdel-Haleem Abdel-Aty. Reversible circuit synthesis by genetic programming using dynamic gate libraries. Quantum Information Processing, 16(6):1-24, 2017. URL: https://doi.org/10.1007/s11128-017-1609-8.
  3. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, 1993. Google Scholar
  4. Mohammad AlFailakawi, Imtiaz Ahmad, Laila AlTerkawi, and Suha Hamdan. Depth optimization for topological quantum circuits. Quantum Information Processing, 14(2):447-463, 2015. URL: https://doi.org/10.1007/s11128-014-0867-y.
  5. Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary gates for quantum computation. Physical Review A, 52(5):3457-3467, 1995. URL: https://doi.org/10.1103/physreva.52.3457.
  6. Kamalika Datta, Gaurav Rathi, Indranil Sengupta, and Hafizur Rahaman. Synthesis of Reversible Circuits Using Heuristic Search Method. In International Conference on VLSI Design, pages 328-333, 2012. URL: https://doi.org/10.1109/vlsid.2012.92.
  7. Kamalika Datta, Indranil Sengupta, and Hafizur Rahaman. Particle Swarm Optimization Based Circuit Synthesis of Reversible Logic. In International Symposium on Electronic System Design, pages 226-230, 2012. URL: https://doi.org/10.1109/ised.2012.33.
  8. Alexandre A. A. de Almeida, Gerhard W. Dueck, and Alexandre C. R. da Silva. Reversible Circuit Optimization Based on Tabu Search. In International Symposium on Multiple-Valued Logic, pages 103-108, 2018. URL: https://doi.org/10.1109/ismvl.2018.00026.
  9. Oleg Golubitsky and Dmitri Maslov. A Study of Optimal 4-Bit Reversible Toffoli Circuits and Their Synthesis. IEEE Transactions on Computers, 61(9):1341-1353, 2011. URL: https://doi.org/10.1109/tc.2011.144.
  10. Daniel Große, Robert Wille, Gerhard W. Dueck, and Rolf Drechsler. Exact Multiple-Control Toffoli Network Synthesis With SAT Techniques. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(5):703-715, 2009. URL: https://doi.org/10.1109/tcad.2009.2017215.
  11. Pallav Gupta, Abhinav Agrawal, and Niraj K. Jha. An Algorithm for Synthesis of Reversible Logic Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(11):2317-2330, 2006. URL: https://doi.org/10.1109/tcad.2006.871622.
  12. Kazuo Iwama, Yahiko Kambayashi, and Shigeru Yamashita. Transformation rules for designing CNOT-based quantum circuits. In Design Automation Conference. ACM Press, 2002. URL: https://doi.org/10.1145/513918.514026.
  13. Jihye Jung and In-Chan Choi. A multi-commodity network model for optimal quantum reversible circuit synthesis. PLOS ONE, 16(6):e0253140, 2021. URL: https://doi.org/10.1371/journal.pone.0253140.
  14. Mridul Krishna and Anupam Chattopadhyay. Efficient Reversible Logic Synthesis via Isomorphic Subgraph Matching. In International Symposium on Multiple-Valued Logic, pages 103-108, 2014. URL: https://doi.org/10.1109/ismvl.2014.26.
  15. Chia-Chun Lin and Niraj K. Jha. RMDDS: Reed-Muller decision diagram synthesis of reversible logic circuits. ACM Journal on Emerging Technologies in Computing Systems, 10(2):1-25, 2014. URL: https://doi.org/10.1145/2564923.
  16. Dmitri Maslov and Gerhard W. Dueck. Improved quantum cost for n-bit Toffoli gates. Electronics Letters, 39(25):1790, 2003. URL: https://doi.org/10.1049/el:20031202.
  17. Dmitri Maslov, Gerhard W. Dueck, and D. Michael Miller. Toffoli network synthesis with templates. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 24(6):807-817, 2005. URL: https://doi.org/10.1109/tcad.2005.847911.
  18. Dmitri Maslov, Gerhard W. Dueck, and D. Michael Miller. Techniques for the synthesis of reversible Toffoli networks. ACM Transactions on Design Automation of Electronic Systems, 12(4):42:1-42:28, 2007. URL: https://doi.org/10.1145/1278349.1278355.
  19. Dmitri Maslov, Gerhard W. Dueck, D. Michael Miller, and Camille Negrevergne. Quantum Circuit Simplification and Level Compaction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(3):436-444, 2008. URL: https://doi.org/10.1109/tcad.2007.911334.
  20. PACE. Partnership for an Advanced Computing Environment (PACE), 2017. URL: http://www.pace.gatech.edu.
  21. Laurent Perron and Vincent Furnon. Google OR-Tools v9.8. https://developers.google.com/optimization/, 2023.
  22. Aditya K. Prasad, Vivek V. Shende, Igor L. Markov, John P. Hayes, and Ketan N. Patel. Data structures and algorithms for simplifying reversible circuits. ACM Journal on Emerging Technologies in Computing Systems, 2(4):277-293, 2006. URL: https://doi.org/10.1145/1216396.1216399.
  23. Mehdi Saeedi and Igor L. Markov. Synthesis and optimization of reversible circuits—a survey. ACM Computing Surveys, 45(2):1-34, 2013. URL: https://doi.org/10.1145/2431211.2431220.
  24. Mehdi Saeedi, Morteza Saheb Zamani, Mehdi Sedighi, and Zahra Sasanian. Reversible circuit synthesis using a cycle-based approach. ACM Journal on Emerging Technologies in Computing Systems, 6(4):1-26, 2010. URL: https://doi.org/10.1145/1877745.1877747.
  25. Trailokya Nath Sasamal, Ashutosh Kumar Singh, and Anand Mohan. Reversible Logic Circuit Synthesis and Optimization Using Adaptive Genetic Algorithm. Procedia Computer Science, 70:407-413, 2015. URL: https://doi.org/10.1016/j.procs.2015.10.054.
  26. Mathias Soeken, Robert Wille, Gerhard W. Dueck, and Rolf Drechsler. Window optimization of reversible and quantum circuits. In IEEE Symposium on Design and Diagnostics of Electronic Circuits and Systems, pages 341-345, 2010. URL: https://doi.org/10.1109/ddecs.2010.5491754.
  27. Robert Wille and Rolf Drechsler. Effect of BDD Optimization on Synthesis of Reversible and Quantum Logic. Electronic Notes in Theoretical Computer Science, 253(6):57-70, 2010. URL: https://doi.org/10.1016/j.entcs.2010.02.006.
  28. Robert Wille, Daniel Große, Lisa Teuber, Gerhard W. Dueck, and Rolf Drechsler. RevLib: An Online Resource for Reversible Functions and Reversible Circuits. In International Symposium on Multiple-Valued Logic, pages 220-225, 2008. URL: https://doi.org/10.1109/ismvl.2008.43.
  29. Robert Wille, Hoang M. Le, Gerhard W. Dueck, and Daniel Große. Quantified synthesis of reversible logic. In Conference on Design, automation and test in Europe, pages 1015-1020, 2008. URL: https://doi.org/10.1145/1403375.1403620.
  30. H. Paul Williams. Model Building in Mathematical Programming. John Wiley & Sons, 2013. Google Scholar
  31. Wei Zhu, Zhiqiang Li, Gaoman Zhang, Suhan Pan, and Wei Zhang. A Reversible Logical Circuit Synthesis Algorithm Based on Decomposition of Cycle Representations of Permutations. International Journal of Theoretical Physics, 57(8):2466-2474, 2018. URL: https://doi.org/10.1007/s10773-018-3768-5.
  32. Alwin Zulehner and Robert Wille. Skipping Embedding in the Design of Reversible Circuits. In International Symposium on Multiple-Valued Logic, pages 173-178, 2017. URL: https://doi.org/10.1109/ismvl.2017.19.