Document Open Access Logo

Deterministic Sub-Linear Space LCE Data Structures With Efficient Construction

Authors Yuka Tanimura, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, Simon J. Puglisi, Masayuki Takeda



PDF
Thumbnail PDF

File

LIPIcs.CPM.2016.1.pdf
  • Filesize: 0.5 MB
  • 10 pages

Document Identifiers

Author Details

Yuka Tanimura
Tomohiro I
Hideo Bannai
Shunsuke Inenaga
Simon J. Puglisi
Masayuki Takeda

Cite AsGet BibTex

Yuka Tanimura, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, Simon J. Puglisi, and Masayuki Takeda. Deterministic Sub-Linear Space LCE Data Structures With Efficient Construction. In 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 54, pp. 1:1-1:10, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/LIPIcs.CPM.2016.1

Abstract

Given a string S of n symbols, a longest common extension query LCE(i,j) asks for the length of the longest common prefix of the $i$th and $j$th suffixes of S. LCE queries have several important applications in string processing, perhaps most notably to suffix sorting. Recently, Bille et al. (J. Discrete Algorithms 25:42-50, 2014, Proc. CPM 2015:65-76) described several data structures for answering LCE queries that offers a space-time trade-off between data structure size and query time. In particular, for a parameter 1 <= tau <= n, their best deterministic solution is a data structure of size O(n/tau) which allows LCE queries to be answered in O(tau) time. However, the construction time for all deterministic versions of their data structure is quadratic in n. In this paper, we propose a deterministic solution that achieves a similar space-time trade-off of O(tau * min(log(tau),log(n/tau)) query time using O(n/tau) space, but significantly improve the construction time to O(n*tau).
Keywords
  • longest common extension
  • longest common prefix
  • sparse suffix array

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Proc. Latin'00, pages 88-94, 2000. Google Scholar
  2. Philip Bille, Inge Li Gørtz, Mathias Bæk Tejs Knudsen, Moshe Lewenstein, and Hjalte Wedel Vildhøj. Longest common extensions in sublinear space. In Proc. CPM 2015, pages 65-76, 2015. Google Scholar
  3. Philip Bille, Inge Li Gørtz, Benjamin Sach, and Hjalte Wedel Vildhøj. Time-space trade-offs for longest common extensions. J. Discrete Algorithms, 25:42-50, 2014. Google Scholar
  4. Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997. Google Scholar
  5. Juha Kärkkäinen. Fast BWT in small space by blockwise suffix sorting. Theor. Comput. Sci., 387(3):249-257, 2007. Google Scholar
  6. Juha Kärkkäinen, Dominik Kempa, and Simon J. Puglisi. Linear time Lempel-Ziv factorization: Simple, fast, small. In Proc. CPM'13, volume 7922 of Lecture Notes in Computer Science, pages 189-200. Springer, 2013. Google Scholar
  7. Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construction. J. ACM, 53(6):918-936, 2006. Google Scholar
  8. Juha Kärkkäinen and Esko Ukkonen. Sparse suffix trees. In Proc. COCOON'96, pages 219-230, 1996. Google Scholar
  9. Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-time longest-common-prefix computation in suffix arrays and its applications. In Proc. CPM'01, pages 181-192, 2001. Google Scholar
  10. Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-time construction of suffix arrays. In Proc. CPM'03, pages 186-199, 2003. Google Scholar
  11. Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays. In Proc. CPM'03, pages 200-210, 2003. Google Scholar
  12. Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string searches. SIAM J. Comput., 22(5):935-948, 1993. Google Scholar
  13. Simon J. Puglisi and Andrew Turpin. Space-time tradeoffs for longest-common-prefix array computation. In Proc. ISAAC'08, volume 5369 of Lecture Notes in Computer Science, pages 124-135. Springer, 2008. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail