Tarski initiated a logic-based approach to formal geometry that studies first-order structures with a ternary betweenness relation (\beta) and a quaternary equidistance relation (\equiv). Tarski established, inter alia, that the first-order (FO) theory of (R^2,\beta,\equiv) is decidable. Aiello and van Benthem (2002) conjectured that the FO-theory of expansions of (R^2,\beta) with unary predicates is decidable. We refute this conjecture by showing that for all n > 1, the FO-theory of monadic expansions of (R^n,\beta) is Pi^1_1-hard and therefore not even arithmetical. We also define a natural and comprehensive class C of geometric structures (T,\beta), where T is a subset of R^n, and show that for each structure (T,\beta) in C, the FO-theory of the class of monadic expansions of (T,\beta) is undecidable. We then consider classes of expansions of structures (T,\beta) with restricted unary predicates, for example finite predicates, and establish a variety of related undecidability results. In addition to decidability questions, we briefly study the expressivity of universal MSO and weak universal MSO over expansions of (R^n,\beta). While the logics are incomparable in general, over expansions of (R^n,\beta), formulae of weak universal MSO translate into equivalent formulae of universal MSO. An extended version of this article can be found on the ArXiv (arXiv:1208.4930v1).
@InProceedings{kuusisto_et_al:LIPIcs.CSL.2012.470, author = {Kuusisto, Antti and Meyers, Jeremy and Virtema, Jonni}, title = {{Undecidable First-Order Theories of Affine Geometries}}, booktitle = {Computer Science Logic (CSL'12) - 26th International Workshop/21st Annual Conference of the EACSL}, pages = {470--484}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-42-2}, ISSN = {1868-8969}, year = {2012}, volume = {16}, editor = {C\'{e}gielski, Patrick and Durand, Arnaud}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2012.470}, URN = {urn:nbn:de:0030-drops-36910}, doi = {10.4230/LIPIcs.CSL.2012.470}, annote = {Keywords: Tarski’s geometry, undecidability, spatial logic, classical logic} }
Feedback for Dagstuhl Publishing