Quantified Constraint Satisfaction on Monoids

Authors Hubie Chen, Peter Mayr

Thumbnail PDF


  • Filesize: 482 kB
  • 14 pages

Document Identifiers

Author Details

Hubie Chen
Peter Mayr

Cite AsGet BibTex

Hubie Chen and Peter Mayr. Quantified Constraint Satisfaction on Monoids. In 25th EACSL Annual Conference on Computer Science Logic (CSL 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 62, pp. 15:1-15:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


We contribute to a research program that aims to classify, for each finite structure, the computational complexity of the quantified constraint satisfaction problem on the structure. Employing an established algebraic viewpoint to studying this problem family, whereby this classification program can be phrased as a classification of algebras, we give a complete classification of all finite monoids.
  • quantified constraint satisfaction
  • universal algebra
  • computational complexity


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consistency methods. J. ACM, 61(1):Art. 3, 19, 2014. URL: http://dx.doi.org/10.1145/2556646.
  2. Ferdinand Börner, Andrei A. Bulatov, Hubie Chen, Peter Jeavons, and Andrei A. Krokhin. The complexity of constraint satisfaction games and QCSP. Inform. and Comput., 207(9):923-944, 2009. URL: http://dx.doi.org/10.1016/j.ic.2009.05.003.
  3. Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of constraints using finite algebras. SIAM J. Comput., 34(3):720-742, 2005. URL: http://dx.doi.org/10.1137/S0097539700376676.
  4. Andrei Bulatov, Peter Jeavons, and Mikhail Volkov. Finite semigroups imposing tractable constraints. In Semigroups, algorithms, automata and languages (Coimbra, 2001), pages 313-329. World Sci. Publ., River Edge, NJ, 2002. URL: http://dx.doi.org/10.1142/9789812776884_0011.
  5. Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM, 53(1):66-120, 2006. URL: http://dx.doi.org/10.1145/1120582.1120584.
  6. Catarina Carvalho, Florent R. Madelaine, and Barnaby Martin. From complexity to algebra and back: Digraph classes, collapsibility, and the PGP. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 462-474, 2015. Google Scholar
  7. Hubie Chen. The complexity of quantified constraint satisfaction: collapsibility, sink algebras, and the three-element case. SIAM J. Comput., 37(5):1674-1701, 2008. URL: http://dx.doi.org/10.1137/060668572.
  8. Hubie Chen. Quantified constraint satisfaction and the polynomially generated powers property. Algebra Universalis, 65(3):213-241, 2011. URL: http://dx.doi.org/10.1007/s00012-011-0125-4.
  9. Hubie Chen. Meditations on quantified constraint satisfaction. In Logic and program semantics, volume 7230 of Lecture Notes in Comput. Sci., pages 35-49. Springer, Heidelberg, 2012. URL: http://dx.doi.org/10.1007/978-3-642-29485-3_4.
  10. Hubie Chen, Victor Dalmau, and Berit Grußien. Arc consistency and friends. J. Logic Comput., 23(1):87-108, 2013. URL: http://dx.doi.org/10.1093/logcom/exr039.
  11. Hubie Chen, Florent Madelaine, and Barnaby Martin. Quantified constraints and containment problems. Log. Methods Comput. Sci., 11(3):3:9, 28, 2015. Google Scholar
  12. Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity classifications of Boolean constraint satisfaction problems. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. URL: http://dx.doi.org/10.1137/1.9780898718546.
  13. Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP and constraint satisfaction: a study through Datalog and group theory. SIAM J. Comput., 28(1):57-104 (electronic), 1999. URL: http://dx.doi.org/10.1137/S0097539794266766.
  14. Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Combin. Theory Ser. B, 48(1):92-110, 1990. URL: http://dx.doi.org/10.1016/0095-8956(90)90132-J.
  15. John M. Howie. Fundamentals of semigroup theory, volume 12 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 1995. Oxford Science Publications. Google Scholar
  16. Paweł Idziak, Petar Marković, Ralph McKenzie, Matthew Valeriote, and Ross Willard. Tractability and learnability arising from algebras with few subpowers. SIAM J. Comput., 39(7):3023-3037, 2010. URL: http://dx.doi.org/10.1137/090775646.
  17. Florent Madelaine and Barnaby Martin. QCSP on partially reflexive cycles - the wavy line of tractability. In Computer science - theory and applications, volume 7913 of Lecture Notes in Comput. Sci., pages 322-333. Springer, Heidelberg, 2013. URL: http://dx.doi.org/10.1007/978-3-642-38536-0_28.
  18. Florent R. Madelaine and Barnaby Martin. On the complexity of the model checking problem. CoRR, abs/1210.6893, 2012. Google Scholar
  19. Barnaby Martin. QCSP on partially reflexive forests. In Principles and Practice of Constraint Programming - CP 2011 - 17th International Conference, CP 2011, Perugia, Italy, September 12-16, 2011. Proceedings, pages 546-560, 2011. Google Scholar
  20. Barnaby Martin and Florent Madelaine. Towards a trichotomy for quantified H-coloring. In Logical Approaches to Computational Barriers, Second Conference on Computability in Europe (CiE), pages 342-352, 2006. Google Scholar
  21. Peter Mayr. On finitely related semigroups. Semigroup Forum, 86(3):613-633, 2013. URL: http://dx.doi.org/10.1007/s00233-012-9455-6.
  22. Thomas J. Schaefer. The complexity of satisfiability problems. In Conference Record of the Tenth Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978), pages 216-226. ACM, New York, 1978. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail