On the First-Order Complexity of Induced Subgraph Isomorphism

Authors Oleg Verbitsky, Maksim Zhukovskii

Thumbnail PDF


  • Filesize: 0.51 MB
  • 16 pages

Document Identifiers

Author Details

Oleg Verbitsky
Maksim Zhukovskii

Cite AsGet BibTex

Oleg Verbitsky and Maksim Zhukovskii. On the First-Order Complexity of Induced Subgraph Isomorphism. In 26th EACSL Annual Conference on Computer Science Logic (CSL 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 82, pp. 40:1-40:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Given a graph F, let I(F) be the class of graphs containing F as an induced subgraph. Let W[F] denote the minimum k such that I(F) is definable in k-variable first-order logic. The recognition problem of I(F), known as Induced Subgraph Isomorphism (for the pattern graph F), is solvable in time O(n^{W[F]}). Motivated by this fact, we are interested in determining or estimating the value of W[F]. Using Olariu's characterization of paw-free graphs, we show that I(K_3+e) is definable by a first-order sentence of quantifier depth 3, where K_3+e denotes the paw graph. This provides an example of a graph F with W[F] strictly less than the number of vertices in F. On the other hand, we prove that W[F]=4 for all F on 4 vertices except the paw graph and its complement. If F is a graph on t vertices, we prove a general lower bound W[F]>(1/2-o(1))t, where the function in the little-o notation approaches 0 as t increases. This bound holds true even for a related parameter W^*[F], which is defined as the minimum k such that I(F) is definable in the k-variable infinitary logic. We show that W^*[F] can be strictly less than W[F]. Specifically, W^*[P_4]=3 for P_4 being the path graph on 4 vertices.
  • the induced subgraph isomorphism problem
  • descriptive and computational complexity
  • finite-variable first-order logic
  • quantifier depth and variable w


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844-856, 1995. URL: http://dx.doi.org/10.1145/210332.210337.
  2. Andries E. Brouwer and Dale M. Mesner. The connectivity of strongly regular graphs. Eur. J. Comb., 6(3):215-216, 1985. URL: http://dx.doi.org/10.1016/S0195-6698(85)80030-5.
  3. Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346-1367, 2006. URL: http://dx.doi.org/10.1016/j.jcss.2006.04.007.
  4. Yijia Chen and Jörg Flum. On parameterized path and chordless path problems. In Proc. of the 22nd Annual IEEE Conference on Computational Complexity (CCC'07), pages 250-263. IEEE Computer Society, 2007. URL: http://dx.doi.org/10.1109/CCC.2007.21.
  5. Derek G. Corneil, Yehoshua Perl, and Lorna K. Stewart. A linear recognition algorithm for cographs. SIAM J. Comput., 14(4):926-934, 1985. URL: http://dx.doi.org/10.1137/0214065.
  6. D. G. Corneil, H. Lerchs, and L. Stewart Burlingham. Complement reducible graphs. Discrete Appl. Math., 3(3):163-174, 1981. URL: http://dx.doi.org/10.1016/0166-218X(81)90013-5.
  7. Bruno Courcelle. The monadic second-order logic of graphs I. Recognizable sets of finite graphs. Inf. Comput., 85(1):12-75, 1990. URL: http://dx.doi.org/10.1016/0890-5401(90)90043-H.
  8. Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and dominating set. Theor. Comput. Sci., 326(1-3):57-67, 2004. URL: http://dx.doi.org/10.1016/j.tcs.2004.05.009.
  9. Peter Floderus, Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Detecting and counting small pattern graphs. SIAM J. Discrete Math., 29(3):1322-1339, 2015. URL: http://dx.doi.org/10.1137/140978211.
  10. Peter Floderus, Mirosław Kowaluk, Andrzej Lingas, and Eva-Marta Lundell. Induced subgraph isomorphism: Are some patterns substantially easier than others? Theoretical Computer Science, 605:119-128, 2015. URL: http://dx.doi.org/10.1016/j.tcs.2015.09.001.
  11. François Le Gall. Powers of tensors and fast matrix multiplication. In Proc. of the Int. Symposium on Symbolic and Algebraic Computation (ISSAC'14), pages 296-303. ACM, 2014. URL: http://dx.doi.org/10.1145/2608628.2608664.
  12. Chris D. Godsil. Problems in algebraic combinatorics. Electr. J. Comb., 2:F#1, 1995. URL: http://www.combinatorics.org/Volume_2/PDFFiles/v2i1f1.pdf.
  13. Neil Immerman. Descriptive complexity. New York, NY: Springer, 1999. URL: http://dx.doi.org/10.1007/978-1-4612-0539-5.
  14. Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM J. Comput., 7(4):413-423, 1978. URL: http://dx.doi.org/10.1137/0207033.
  15. Svante Janson, Tomasz Łuczak, and Andrzej Ruciński. Random graphs. New York, Berlin: Wiley, 2000. Google Scholar
  16. Jeong Han Kim, Oleg Pikhurko, Joel H. Spencer, and Oleg Verbitsky. How complex are random graphs in first order logic? Random Struct. Algorithms, 26(1-2):119-145, 2005. URL: http://dx.doi.org/10.1002/rsa.20049.
  17. Ton Kloks, Dieter Kratsch, and Haiko Müller. Finding and counting small induced subgraphs efficiently. Inf. Process. Lett., 74(3-4):115-121, 2000. URL: http://dx.doi.org/10.1016/S0020-0190(00)00047-8.
  18. Yuan Li, Alexander A. Razborov, and Benjamin Rossman. On the AC⁰ complexity of Subgraph Isomorphism. In Proc. of the 55th IEEE Ann. Symposium on Foundations of Computer Science (FOCS'14), pages 344-353. IEEE Computer Society, 2014. URL: http://dx.doi.org/10.1109/FOCS.2014.44.
  19. Leonid Libkin. Elements of Finite Model Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004. URL: http://dx.doi.org/10.1007/978-3-662-07003-1.
  20. Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Commentat. Math. Univ. Carol., 26:415-419, 1985. Google Scholar
  21. Stephan Olariu. Paw-free graphs. Inf. Process. Lett., 28:53-54, 1988. URL: http://dx.doi.org/10.1016/0020-0190(88)90143-3.
  22. Oleg Pikhurko, Joel Spencer, and Oleg Verbitsky. Decomposable graphs and definitions with no quantifier alternation. Eur. J. Comb., 28(8):2264-2283, 2007. URL: http://dx.doi.org/10.1016/j.ejc.2007.04.016.
  23. Oleg Pikhurko and Oleg Verbitsky. Logical complexity of graphs: a survey. In Martin Grohe and Janos Makowsky, editors, Model theoretic methods in finite combinatorics, volume 558 of Contemporary Mathematics, pages 129-179. American Mathematical Society (AMS), Providence, RI, 2011. Google Scholar
  24. Benjamin Rossman. On the constant-depth complexity of k-clique. In Proc. of the 40th Ann. ACM Symposium on Theory of Computing (STOC'08), pages 721-730. ACM, 2008. URL: http://dx.doi.org/10.1145/1374376.1374480.
  25. Joel H. Spencer. The strange logic of random graphs. Berlin: Springer, 2001. URL: http://dx.doi.org/10.1007/978-3-662-04538-1.
  26. Oleg Verbitsky and Maksim Zhukovskii. The descriptive complexity of Subgraph Isomorphism without numerics. In Proc. of the 12th Int. Computer Science Symposium in Russia (CSR'17), volume 10304 of Lecture Notes in Computer Science, pages 308-322. Springer, 2017. A full version: http://arxiv.org/abs/1607.08067. URL: http://dx.doi.org/10.1007/978-3-319-58747-9_27.
  27. Oleg Verbitsky and Maksim Zhukovskii. On the first-order complexity of Induced Subgraph Isomorphism. E-print, 2017. URL: http://arxiv.org/abs/1704.02237.
  28. Virginia Vassilevska Williams, Joshua R. Wang, Richard Ryan Williams, and Huacheng Yu. Finding four-node subgraphs in triangle time. In Proc. of the 26th Ann. ACM-SIAM Symposium on Discrete Algorithms (SODA'15), pages 1671-1680. SIAM, 2015. URL: http://dx.doi.org/10.1137/1.9781611973730.111.
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail