Dynamic Complexity of Regular Languages: Big Changes, Small Work

Authors Felix Tschirbs, Nils Vortmeier, Thomas Zeume

Thumbnail PDF


  • Filesize: 0.71 MB
  • 19 pages

Document Identifiers

Author Details

Felix Tschirbs
  • Ruhr-Universität Bochum, Germany
Nils Vortmeier
  • Ruhr-Universität Bochum, Germany
Thomas Zeume
  • Ruhr-Universität Bochum, Germany


We are grateful to Jonas Schmidt and Thomas Schwentick for insightful discussions.

Cite AsGet BibTex

Felix Tschirbs, Nils Vortmeier, and Thomas Zeume. Dynamic Complexity of Regular Languages: Big Changes, Small Work. In 31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 252, pp. 35:1-35:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Whether a changing string is member of a certain regular language can be maintained in the DynFO framework of Patnaik and Immerman: after changing the symbol at one position of the string, a first-order update formula can express - using additionally stored information - whether the resulting string is in the regular language. We extend this and further known results by considering changes of many positions at once. We also investigate to which degree the obtained update formulas imply work-efficient parallel dynamic algorithms.

Subject Classification

ACM Subject Classification
  • Theory of computation → Complexity theory and logic
  • Theory of computation → Logic and databases
  • dynamic descriptive complexity
  • regular languages
  • batch changes
  • work


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks. Minimizing disjunctive normal form formulas and AC^0 circuits given a truth table. SIAM J. Comput., 38(1):63-84, 2008. URL: https://doi.org/10.1137/060664537.
  2. François Bédard, François Lemieux, and Pierre McKenzie. Extensions to Barrington’s m-program model. Theor. Comput. Sci., 107(1):31-61, 1993. URL: https://doi.org/10.1016/0304-3975(93)90253-P.
  3. Xi Chen, Igor Carboni Oliveira, Rocco A. Servedio, and Li-Yang Tan. Near-optimal small-depth lower bounds for small distance connectivity. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 612-625. ACM, 2016. URL: https://doi.org/10.1145/2897518.2897534.
  4. Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick, and Thomas Zeume. Reachability is in DynFO. J. ACM, 65(5):33:1-33:24, 2018. URL: https://doi.org/10.1145/3212685.
  5. Samir Datta, Pankaj Kumar, Anish Mukherjee, Anuj Tawari, Nils Vortmeier, and Thomas Zeume. Dynamic complexity of reachability: How many changes can we handle? In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 122:1-122:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.122.
  6. Samir Datta, Anish Mukherjee, Thomas Schwentick, Nils Vortmeier, and Thomas Zeume. A strategy for dynamic programs: Start over and muddle through. Logical Methods in Computer Science, 15(2), 2019. URL: https://doi.org/10.23638/LMCS-15(2:12)2019.
  7. Samir Datta, Anish Mukherjee, Nils Vortmeier, and Thomas Zeume. Reachability and distances under multiple changes. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 120:1-120:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.ICALP.2018.120.
  8. Guozhu Dong and Jianwen Su. First-order incremental evaluation of datalog queries. In Database Programming Languages (DBPL-4), Proceedings of the Fourth International Workshop on Database Programming Languages - Object Models and Languages, pages 295-308, 1993. Google Scholar
  9. Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, and Sven Skyum. Dynamic word problems. J. ACM, 44(2):257-271, 1997. URL: https://doi.org/10.1145/256303.256309.
  10. Wouter Gelade, Marcel Marquardt, and Thomas Schwentick. The dynamic complexity of formal languages. ACM Trans. Comput. Log., 13(3):19:1-19:36, 2012. URL: https://doi.org/10.1145/2287718.2287719.
  11. Johan Håstad. Almost optimal lower bounds for small depth circuits. In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages 6-20. ACM, 1986. URL: https://doi.org/10.1145/12130.12132.
  12. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst. Sci., 62(2):367-375, 2001. URL: https://doi.org/10.1006/jcss.2000.1727.
  13. Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer Science & Business Media, 2012. URL: https://doi.org/10.1007/978-3-642-24508-4.
  14. Kenneth Krohn and John Rhodes. Algebraic theory of machines. i. prime decomposition theorem for finite semigroups and machines. Transactions of the American Mathematical Society, 116:450-464, 1965. URL: https://doi.org/10.1016/S0022-0000(67)80007-2.
  15. Leonid Libkin. Elements of Finite Model Theory. Springer, 2004. URL: https://doi.org/10.1007/978-3-662-07003-1.
  16. Leonid Libkin. Logics for unranked trees: An overview. Log. Methods Comput. Sci., 2(3), 2006. URL: https://doi.org/10.2168/LMCS-2(3:2)2006.
  17. Sushant Patnaik and Neil Immerman. Dyn-FO: A parallel, dynamic complexity class. J. Comput. Syst. Sci., 55(2):199-209, 1997. URL: https://doi.org/10.1006/jcss.1997.1520.
  18. Jonas Schmidt, Thomas Schwentick, Till Tantau, Nils Vortmeier, and Thomas Zeume. Work-sensitive dynamic complexity of formal languages. In Stefan Kiefer and Christine Tasson, editors, Foundations of Software Science and Computation Structures - 24th International Conference, FOSSACS 2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, volume 12650 of Lecture Notes in Computer Science, pages 490-509. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-71995-1_25.
  19. Jonas Schmidt, Thomas Schwentick, Till Tantau, Nils Vortmeier, and Thomas Zeume. Work-sensitive dynamic complexity of formal languages. CoRR, abs/2101.08735, 2021. URL: http://arxiv.org/abs/2101.08735.
  20. Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Inf. Control., 8(2):190-194, 1965. URL: https://doi.org/10.1016/S0019-9958(65)90108-7.
  21. Thomas Schwentick, Nils Vortmeier, and Thomas Zeume. Dynamic complexity under definable changes. In Michael Benedikt and Giorgio Orsi, editors, 20th International Conference on Database Theory, ICDT 2017, March 21-24, 2017, Venice, Italy, volume 68 of LIPIcs, pages 19:1-19:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ICDT.2017.19.
  22. Thomas Schwentick, Nils Vortmeier, and Thomas Zeume. Dynamic complexity under definable changes. ACM Trans. Database Syst., 43(3):12:1-12:38, 2018. URL: https://doi.org/10.1145/3241040.
  23. Thomas Schwentick, Nils Vortmeier, and Thomas Zeume. Sketches of dynamic complexity. SIGMOD Rec., 49(2):18-29, 2020. URL: https://doi.org/10.1145/3442322.3442325.
  24. Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity. In Proceedings of the nineteenth annual ACM symposium on Theory of computing, pages 77-82, 1987. URL: https://doi.org/10.1145/28395.28404.
  25. Larry Stockmeyer and Uzi Vishkin. Simulation of parallel random access machines by circuits. SIAM Journal on Computing, 13(2):409-422, 1984. URL: https://doi.org/10.1137/0213027.
  26. Nils Vortmeier. Dynamic expressibility under complex changes. PhD thesis, TU Dortmund University, Germany, 2019. URL: https://doi.org/10.17877/DE290R-20434.