Limitations of Game Comonads for Invertible-Map Equivalence via Homomorphism Indistinguishability

Authors Moritz Lichter , Benedikt Pago , Tim Seppelt



PDF
Thumbnail PDF

File

LIPIcs.CSL.2024.36.pdf
  • Filesize: 0.81 MB
  • 19 pages

Document Identifiers

Author Details

Moritz Lichter
  • RWTH Aachen University, Germany
Benedikt Pago
  • University of Cambridge, UK
Tim Seppelt
  • RWTH Aachen University, Germany

Acknowledgements

We would like to thank the anonymous reviewers for detailed comments. Moreover, we are greatful for discussions which took place at the "Resources and Co-Resources" workshop at the University of Cambridge in July 2023.

Cite AsGet BibTex

Moritz Lichter, Benedikt Pago, and Tim Seppelt. Limitations of Game Comonads for Invertible-Map Equivalence via Homomorphism Indistinguishability. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 36:1-36:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.CSL.2024.36

Abstract

Abramsky, Dawar, and Wang (2017) introduced the pebbling comonad for k-variable counting logic and thereby initiated a line of work that imports category theoretic machinery to finite model theory. Such game comonads have been developed for various logics, yielding characterisations of logical equivalences in terms of isomorphisms in the associated co-Kleisli category. We show a first limitation of this approach by studying linear-algebraic logic, which is strictly more expressive than first-order counting logic and whose k-variable logical equivalence relations are known as invertible-map equivalences (IM). We show that there exists no finite-rank comonad on the category of graphs whose co-Kleisli isomorphisms characterise IM-equivalence, answering a question of Ó Conghaile and Dawar (CSL 2021). We obtain this result by ruling out a characterisation of IM-equivalence in terms of homomorphism indistinguishability and employing the Lovász-type theorem for game comonads established by Reggio (2022). Two graphs are homomorphism indistinguishable over a graph class if they admit the same number of homomorphisms from every graph in the class. The IM-equivalences cannot be characterised in this way, neither when counting homomorphisms in the natural numbers, nor in any finite prime field.

Subject Classification

ACM Subject Classification
  • Theory of computation → Finite Model Theory
Keywords
  • finite model theory
  • graph isomorphism
  • linear-algebraic logic
  • homomorphism indistinguishability
  • game comonads
  • invertible-map equivalence

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Samson Abramsky, Anuj Dawar, and Pengming Wang. The pebbling comonad in Finite Model Theory. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavík, Iceland, June 20-23, 2017, pages 1-12. IEEE Computer Society, 2017. URL: https://doi.org/10.1109/LICS.2017.8005129.
  2. Samson Abramsky, Tomáš Jakl, and Thomas Paine. Discrete Density Comonads and Graph Parameters. In Helle Hvid Hansen and Fabio Zanasi, editors, Coalgebraic Methods in Computer Science, pages 23-44, Cham, 2022. Springer International Publishing. URL: https://doi.org/10.1007/978-3-031-10736-8_2.
  3. Samson Abramsky and Nihil Shah. Relating structure and power: Comonadic semantics for computational resources. Journal of Logic and Computation, 31(6):1390-1428, September 2021. URL: https://doi.org/10.1093/logcom/exab048.
  4. Albert Atserias, Laura Mančinska, David E. Roberson, Robert Šámal, Simone Severini, and Antonios Varvitsiotis. Quantum and non-signalling graph isomorphisms. J. Comb. Theory, Ser. B, 136:289-328, 2019. URL: https://doi.org/10.1016/j.jctb.2018.11.002.
  5. Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science, 209(1):1-45, December 1998. URL: https://doi.org/10.1016/S0304-3975(97)00228-4.
  6. Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for graph identification. Combinatorica, 12(4):389-410, December 1992. URL: https://doi.org/10.1007/BF01305232.
  7. Anuj Dawar, Erich Grädel, and Moritz Lichter. Limitations of the invertible-map equivalences. J. Log. Comput., 33(5):961-969, 2023. URL: https://doi.org/10.1093/logcom/exac058.
  8. Anuj Dawar, Erich Grädel, and Wied Pakusa. Approximations of Isomorphism and Logics with Linear-Algebraic Operators. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 112:1-112:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.112.
  9. Anuj Dawar, Martin Grohe, Bjarki Holm, and Bastian Laubner. Logics with Rank Operators. In Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA, pages 113-122. IEEE Computer Society, 2009. URL: https://doi.org/10.1109/LICS.2009.24.
  10. Anuj Dawar and Bjarki Holm. Pebble games with algebraic rules. In 39th International Colloquium on Automata, Languages, and Programming, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II, volume 7392 of Lecture Notes in Computer Science, pages 251-262. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-31585-5_25.
  11. Anuj Dawar, Tomáš Jakl, and Luca Reggio. Lovász-Type Theorems and Game Comonads. In 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1-13. IEEE, 2021. URL: https://doi.org/10.1109/LICS52264.2021.9470609.
  12. Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász Meets Weisfeiler and Leman. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), volume 107 of Leibniz International Proceedings in Informatics (LIPIcs), pages 40:1-40:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2018.40.
  13. Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. Journal of Graph Theory, 64(4):330-342, August 2010. URL: https://doi.org/10.1002/jgt.20461.
  14. John Faben and Mark Jerrum. The Complexity of Parity Graph Homomorphism: An Initial Investigation. Theory of Computing, 11(2):35-57, 2015. URL: https://doi.org/10.4086/toc.2015.v011a002.
  15. Martin Fürer. Weisfeiler-Lehman refinement requires at least a linear number of iterations. In 28th International Colloquium on Automata, Languages, and Programming, ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 322-333. Springer, 2001. URL: https://doi.org/10.1007/3-540-48224-5_27.
  16. Erich Grädel and Wied Pakusa. Rank logic is dead, long live rank logic! J. Symb. Log., 84(1):54-87, 2019. URL: https://doi.org/10.1017/jsl.2018.33.
  17. Martin Grohe, Moritz Lichter, Daniel Neuen, and Pascal Schweitzer. Compressing CFI graphs and lower bounds for the weisfeiler-leman refinements. CoRR, abs/2308.11970, 2023. to appear at FOCS 2023. URL: https://doi.org/10.48550/ARXIV.2308.11970.
  18. Martin Grohe, Gaurav Rattan, and Tim Seppelt. Homomorphism Tensors and Linear Equations. In Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz International Proceedings in Informatics (LIPIcs), pages 70:1-70:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl endash Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.70.
  19. Lauri Hella. Logical hierarchies in PTIME. Information and Computation, 129(1):1-19, 1996. URL: https://doi.org/10.1006/inco.1996.0070.
  20. Lauri Hella. The Expressive Power of CSP-Quantifiers. In Bartek Klin and Elaine Pimentel, editors, 31st EACSL Annual Conference on Computer Science Logic (CSL 2023), volume 252 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1-25:19, Dagstuhl, Germany, 2023. Schloss Dagstuhl endash Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.CSL.2023.25.
  21. Bjarki Holm. Descriptive complexity of linear algebra. PhD thesis, University of Cambridge, 2011. URL: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609435.
  22. Phokion G. Kolaitis and Jouko A. Väänänen. Generalized quantifiers and pebble games on finite structures. Annals of Pure and Applied Logic, 74(1):23-75, June 1995. URL: https://doi.org/10.1016/0168-0072(94)00025-X.
  23. Moritz Lichter. Separating rank logic from polynomial time. Journal of the ACM, 70(2):1-53, 2023. URL: https://doi.org/10.1145/3572918.
  24. Lászlo Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum Hungarica, 18(3):321-328, September 1967. URL: https://doi.org/10.1007/BF02280291.
  25. László Lovász. Large networks and graph limits. Number volume 60 in American Mathematical Society colloquium publications. American Mathematical Society, Providence, Rhode Island, 2012. URL: https://doi.org/10.1090/coll/060.
  26. Laura Mančinska and David E. Roberson. Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 661-672, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00067.
  27. Yoàv Montacute and Nihil Shah. The Pebble-Relation Comonad in Finite Model Theory. In Christel Baier and Dana Fisman, editors, LICS '22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, pages 13:1-13:11. ACM, 2022. URL: https://doi.org/10.1145/3531130.3533335.
  28. Melvyn B. Nathanson. Elementary Methods in Number Theory, volume 195 of Graduate Texts in Mathematics. Springer New York, New York, NY, 2000. URL: https://doi.org/10.1007/b98870.
  29. Daniel Neuen and Pascal Schweitzer. Benchmark graphs for practical graph isomorphism. In 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 60:1-60:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ESA.2017.60.
  30. Adam Ó Conghaile and Anuj Dawar. Game Comonads & Generalised Quantifiers. In Christel Baier and Jean Goubault-Larrecq, editors, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021), volume 183 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1-16:17, Dagstuhl, Germany, 2021. Schloss DagstuhlendashLeibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.CSL.2021.16.
  31. Luca Reggio. Polyadic sets and homomorphism counting. Advances in Mathematics, 410:108712, December 2022. URL: https://doi.org/10.1016/j.aim.2022.108712.
  32. David E. Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of bounded degree, 2022. URL: https://arxiv.org/abs/2206.10321.
  33. David E. Roberson and Tim Seppelt. Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 101:1-101:18, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.101.
  34. Tim Seppelt. Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors. In Jérôme Leroux, Sylvain Lombardy, and David Peleg, editors, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023), volume 272 of Leibniz International Proceedings in Informatics (LIPIcs), pages 82:1-82:15, Dagstuhl, Germany, 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.MFCS.2023.82.