LIPIcs.DISC.2017.19.pdf
- Filesize: 0.84 MB
- 15 pages
The degree splitting problem requires coloring the edges of a graph red or blue such that each node has almost the same number of edges in each color, up to a small additive discrepancy. The directed variant of the problem requires orienting the edges such that each node has almost the same number of incoming and outgoing edges, again up to a small additive discrepancy. We present deterministic distributed algorithms for both variants, which improve on their counterparts presented by Ghaffari and Su [SODA'17]: our algorithms are significantly simpler and faster, and have a much smaller discrepancy. This also leads to a faster and simpler deterministic algorithm for (2+o(1))Delta-edge-coloring, improving on that of Ghaffari and Su.
Feedback for Dagstuhl Publishing