Contention Resolution Without Collision Detection: Constant Throughput And Logarithmic Energy

Authors Gianluca De Marco, Dariusz R. Kowalski, Grzegorz Stachowiak



PDF
Thumbnail PDF

File

LIPIcs.DISC.2022.17.pdf
  • Filesize: 0.82 MB
  • 21 pages

Document Identifiers

Author Details

Gianluca De Marco
  • Department of Computer Science, University of Salerno, Italy
Dariusz R. Kowalski
  • School of Computer and Cyber Sciences, Augusta University, GA, USA
Grzegorz Stachowiak
  • Institute of Computer Science, University of Wrocław, Poland

Cite As Get BibTex

Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak. Contention Resolution Without Collision Detection: Constant Throughput And Logarithmic Energy. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 17:1-17:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022) https://doi.org/10.4230/LIPIcs.DISC.2022.17

Abstract

A shared channel, also called a multiple access channel, is among the most popular and widely studied models of communication in distributed computing. An unknown number of stations (potentially unbounded) is connected to the channel and can communicate by transmitting and listening. A message is successfully transmitted on the channel if and only if there is a unique transmitter at that time; otherwise the message collides with some other transmission and nothing is sensed by the participating stations. We consider the general framework without collision detection and in which any participating station can join the channel at any moment. The contention resolution task is to let each of the contending stations to broadcast successfully its message on the channel.
In this setting we present the first algorithm which exhibits asymptotically optimal Θ(1) throughput and only an O(log k) energy cost, understood as the maximum number of transmissions performed by a single station (where k is the number of participating stations, initially unknown). We also show that such efficiency cannot be reproduced by non-adaptive algorithms, i.e., whose behavior does not depend on the channel history (for example, classic backoff protocols). Namely, we show that non-adaptive algorithms cannot simultaneously achieve throughput Ω(1/polylog(k)) and energy O((log² k)/(log log k)²).

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
Keywords
  • Shared channel
  • Contention resolution
  • Throughput
  • Energy consumption
  • Randomized algorithms
  • Lower bound

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. A. Fernández Anta, M. A. Mosteiro, and J. Ramon Mu noz. Unbounded contention resolution in multiple-access channels. Algorithmica, 67:295-314, 2013. Google Scholar
  2. M. A. Bender, T. Kopelowitz, S. Pettie, and M. Young. Contention resolution with log-logstar channel accesses. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing (STOC), pages 499-508, Cambridge, MA, USA, 2016. ACM. Google Scholar
  3. Michael A. Bender, Tsvi Kopelowitz, William Kuszmaul, and Seth Pettie. Contention resolution without collision detection. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages 105-118, New York, NY, USA, 2020. Association for Computing Machinery. URL: https://doi.org/10.1145/3357713.3384305.
  4. Giuseppe Bianchi. Performance analysis of the ieee 802.11 distributed coordination function. Selected Areas in Communications, IEEE Journal on, 18:535-547, April 2000. URL: https://doi.org/10.1109/49.840210.
  5. Philipp Brandes, Marcin Kardas, Marek Klonowski, Dominik Pająk, and Roger Wattenhofer. Fast size approximation of a radio network in beeping model. Theoretical Computer Science, 810:15-25, 2020. Special issue on Structural Information and Communication Complexity. URL: https://doi.org/10.1016/j.tcs.2017.05.022.
  6. J. Capetanakis. Tree algorithms for packet broadcast channels. IEEE Transactions on Information Theory, 25:505-515, 1979. Google Scholar
  7. B. S. Chlebus. Randomized communication in radio networks. In P. M. Pardalos, S. Rajasekaran, J. H. Reif, and J. D. P. Rolim, editors, Handbook on Randomized Computing, pages 401-456. Springer, New York, NY, USA, 2001. Google Scholar
  8. Bogdan S. Chlebus, Leszek Gąsieniec, Dariusz R. Kowalski, and Tomasz Radzik. On the wake-up problem in radio networks. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung, editors, Automata, Languages and Programming, pages 347-359, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. Google Scholar
  9. Bogdan S. Chlebus, Leszek Gąsieniec, Alan Gibbons, Andrzej Pelc, and Wojciech Rytter. Deterministic broadcasting in unknown radio networks. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '00, pages 861-870, USA, 2000. Society for Industrial and Applied Mathematics. Google Scholar
  10. Bogdan S. Chlebus and Dariusz R. Kowalski. A better wake-up in radio networks. In Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing, PODC '04, pages 266-274, New York, NY, USA, 2004. Association for Computing Machinery. URL: https://doi.org/10.1145/1011767.1011806.
  11. Bogdan S. Chlebus, Gianluca De Marco, and Dariusz R. Kowalski. Scalable wake-up of multi-channel single-hop radio networks. CoRR, abs/1411.4498, 2014. URL: http://arxiv.org/abs/1411.4498.
  12. Bogdan S. Chlebus, Gianluca De Marco, and Dariusz R. Kowalski. Scalable wake-up of multi-channel single-hop radio networks. Theor. Comput. Sci., 615:23-44, 2016. URL: https://doi.org/10.1016/j.tcs.2015.11.046.
  13. Bogdan S. Chlebus, Gianluca De Marco, and Muhammed Talo. Naming a channel with beeps. Fundam. Informaticae, 153(3):199-219, 2017. URL: https://doi.org/10.3233/FI-2017-1537.
  14. M. Chrobak, L. Gasieniec, and W. Rytter. Fast broadcasting and gossiping in radio networks. Journal of Algorithms, 43:177-189, 2002. Google Scholar
  15. Marek Chrobak, Leszek Gasieniec, and Dariusz Kowalski. The wake-up problem in multi-hop radio networks. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '04, pages 992-1000, USA, 2004. Society for Industrial and Applied Mathematics. Google Scholar
  16. A. E. F. Clementi, A. Monti, and R. Silvestri. Distributed broadcast in radio networks of unknown topology. Theoretical Computer Science, 302:337-364, 2003. Google Scholar
  17. G. De Marco and D. Kowalski. Fast nonadaptive deterministic algorithm for conflict resolution in a dynamic multiple-access channel. SIAM J. Comput, 44(3):868-888, 2015. Google Scholar
  18. Robert G. Gallager. A perspective on multiaccess channels. IEEE Trans. Information Theory, 31(2):124-142, 1985. Google Scholar
  19. A. G. Greenberg, P. Flajolet, and R. E. Ladner. Estimating the multiplicities of conflicts to speed their resolution in multiple access channels. Journal of the ACM, 34(2):289-325, 1987. Google Scholar
  20. A. G. Greenberg and R. E. Ladner. Estimating the multiplicities of conflicts in multiple access. In IEEE, editor, Proc. of the 24th Annual Symp. on Foundations of Computer Science (FOCS) (Tucson, AZ.)., pages 383-392, Tucson, AZ, USA, 1983. IEEE. Google Scholar
  21. A. G. Greenberg and A S. Winograd. lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels. Journal of ACM, 32:589-596, 1985. Google Scholar
  22. J. F. Hayes. An adaptive technique for local distribution. IEEE Transactions on Communications, 26:1178-1186, 1978. Google Scholar
  23. P. Indyk. Explicit constructions of selectors and related combinatorial structures. In Proceedings, 13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 697-704, San Francisco, CA, USA, 2002. ACM-SIAM. Google Scholar
  24. T. Jurdzinski and G. Stachowiak. Probabilistic algorithms for the wakeup problem in single-hop radio networks. Theory Comput. Syst, 38(3):347-367, 2005. Google Scholar
  25. J. Komlós and A. G. Greenberg. An asymptotically optimal nonadaptive algorithm for conflict resolution in multiple-access channels. IEEE Trans. on Information Theory, 31:302-306, 1985. Google Scholar
  26. D. Kowalski. On selection problem in radio networks. In Proceedings, 24th ACM Symposium on Principles of Distributed Computing (PODC), pages 158-166, Las Vegas, NV, USA, 2005. ACM. Google Scholar
  27. Dariusz R. Kowalski and Andrzej Pelc. Time of deterministic broadcasting in radio networks with local knowledge. SIAM Journal on Computing, 33(4):870-891, 2004. URL: https://doi.org/10.1137/S0097539702419339.
  28. G. De Marco and G. Stachowiak. Asynchronous shared channel. In Elad Michael Schiller and Alexander A. Schwarzmann, editors, Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017, pages 391-400, Washington, DC, USA, 2017. ACM. URL: https://doi.org/10.1145/3087801.3087831.
  29. Gianluca De Marco. Distributed broadcast in unknown radio networks. SIAM J. Comput., 39(6):2162-2175, 2010. URL: https://doi.org/10.1137/080733826.
  30. Gianluca De Marco, Tomasz Jurdzinski, and Dariusz R. Kowalski. Optimal channel utilization with limited feedback. In Leszek Antoni Gasieniec, Jesper Jansson, and Christos Levcopoulos, editors, Fundamentals of Computation Theory - 22nd International Symposium, FCT 2019, Copenhagen, Denmark, August 12-14, 2019, Proceedings, volume 11651 of Lecture Notes in Computer Science, pages 140-152. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-25027-0_10.
  31. Gianluca De Marco, Tomasz Jurdzinski, Dariusz R. Kowalski, Michal Rózanski, and Grzegorz Stachowiak. Subquadratic non-adaptive threshold group testing. J. Comput. Syst. Sci., 111:42-56, 2020. URL: https://doi.org/10.1016/j.jcss.2020.02.002.
  32. Gianluca De Marco, Tomasz Jurdzinski, Michal Rózanski, and Grzegorz Stachowiak. Subquadratic non-adaptive threshold group testing. In Ralf Klasing and Marc Zeitoun, editors, Fundamentals of Computation Theory - 21st International Symposium, FCT 2017, Bordeaux, France, September 11-13, 2017, Proceedings, volume 10472 of Lecture Notes in Computer Science, pages 177-189. Springer, 2017. URL: https://doi.org/10.1007/978-3-662-55751-8_15.
  33. Gianluca De Marco and Dariusz R. Kowalski. Towards power-sensitive communication on a multiple-access channel. In 2010 International Conference on Distributed Computing Systems, ICDCS 2010, Genova, Italy, June 21-25, 2010, pages 728-735. IEEE Computer Society, 2010. URL: https://doi.org/10.1109/ICDCS.2010.50.
  34. Gianluca De Marco and Dariusz R. Kowalski. Contention resolution in a non-synchronized multiple access channel. In 27th IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2013, Cambridge, MA, USA, May 20-24, 2013, pages 525-533. IEEE Computer Society, 2013. URL: https://doi.org/10.1109/IPDPS.2013.68.
  35. Gianluca De Marco and Dariusz R. Kowalski. Contention resolution in a non-synchronized multiple access channel. Theor. Comput. Sci., 689:1-13, 2017. URL: https://doi.org/10.1016/j.tcs.2017.05.014.
  36. Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak. Brief announcement: Deterministic contention resolution on a shared channel. In Ulrich Schmid and Josef Widder, editors, 32nd International Symposium on Distributed Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, volume 121 of LIPIcs, pages 44:1-44:3. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.DISC.2018.44.
  37. Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak. Deterministic contention resolution without collision detection: Throughput vs energy. In 41st IEEE International Conference on Distributed Computing Systems, ICDCS 2021, Washington DC, USA, July 7-10, 2021, pages 1009-1019. IEEE, 2021. URL: https://doi.org/10.1109/ICDCS51616.2021.00100.
  38. Gianluca De Marco, Marco Pellegrini, and Giovanni Sburlati. Faster deterministic wakeup in multiple access channels. Discret. Appl. Math., 155(8):898-903, 2007. URL: https://doi.org/10.1016/j.dam.2006.08.009.
  39. Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press, 1995. URL: https://doi.org/10.1017/CBO9780511814075.
  40. B. S. Tsybakov and V. A. Mikhailov. Free synchronous packet access in a broadcast channel with feedback. Prob. Inf. Transmission, 14:259-280, 1977. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail