Geometric Enumeration of Localized DNA Strand Displacement Reaction Networks

Authors Matthew R. Lakin , Sarika Kumar



PDF
Thumbnail PDF

File

LIPIcs.DNA.30.1.pdf
  • Filesize: 2.75 MB
  • 24 pages

Document Identifiers

Author Details

Matthew R. Lakin
  • Department of Computer Science, University of New Mexico, USA
  • Department of Chemical & Biological Engineering, University of New Mexico, USA
  • Center for Biomedical Engineering, University of New Mexico, USA
Sarika Kumar
  • Department of Computer Science, University of New Mexico, USA

Cite AsGet BibTex

Matthew R. Lakin and Sarika Kumar. Geometric Enumeration of Localized DNA Strand Displacement Reaction Networks. In 30th International Conference on DNA Computing and Molecular Programming (DNA 30). Leibniz International Proceedings in Informatics (LIPIcs), Volume 314, pp. 1:1-1:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.DNA.30.1

Abstract

Localized molecular devices are a powerful tool for engineering complex information-processing circuits and molecular robots. Their practical advantages include speed and scalability of interactions between components tethered near to each other on an underlying nanostructure, and the ability to restrict interactions between more distant components. The latter is a critical feature that must be factored into computational tools for the design and simulation of localized molecular devices: unlike in solution-phase systems, the geometries of molecular interactions must be accounted for when attempting to determine the network of possible reactions in a tethered molecular system. This work aims to address that challenge by integrating, for the first time, automated approaches to analysis of molecular geometry with reaction enumeration algorithms for DNA strand displacement reaction networks that can be applied to tethered molecular systems. By adapting a simple approach to solving the biophysical constraints inherent in molecular interactions to be applicable to tethered systems, we produce a localized reaction enumeration system that enhances previous approaches to reaction enumeration in tethered system by not requiring users to explicitly specify the subsets of components that are capable of interacting. This greatly simplifies the user’s task and could also be used as the basis of future systems for automated placement or routing of signal-transmission and logical processing in molecular devices. We apply this system to several published example systems from the literature, including both tethered molecular logic systems and molecular robots.

Subject Classification

ACM Subject Classification
  • Computer systems organization → Molecular computing
Keywords
  • Localized circuits
  • reaction enumeration
  • DNA strand displacement
  • geometry
  • molecular computing

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Stefan Badelt, Casey Grun, Karthik V. Sarma, Brian Wolfe, Seung Woo Shin, and Erik Winfree. A domain-level DNA strand displacement reaction enumerator allowing arbitrary non-pseudoknotted secondary structures. Journal of the Royal Society Interface, 17(167):20190866, 2020. URL: https://doi.org/10.1098/rsif.2019.0866.
  2. Stefan Badelt, Seung Woo Shin, Robert F. Johnson, Qing Dong, Chris Thachuk, and Erik Winfree. A general-purpose CRN-to-DSD compiler with formal verification, optimization, and simulation capabilities. In R. Brijder and L. Qian, editors, Proceedings of the 23rd International Conference on DNA Computing and Molecular Programming, volume 10467 of Lecture Notes in Computer Science, pages 232-248, 2017. URL: https://doi.org/10.1007/978-3-319-66799-7_15.
  3. Jonathan Bath, Simon J. Green, Katherine E. Allen, and Andrew J. Turberfield. Mechanism for a directional, processive, and reversible DNA motor. Small, 5(13):1513-1516, 2009. URL: https://doi.org/10.1002/smll.200900078.
  4. Hieu Bui, Vincent Miao, Sudhanshu Garg, Reem Mokhtar, Tianqi Song, and John Reif. Design and analysis of localized DNA hybridization chain reactions. Small, 13(12):1602983, 2017. URL: https://doi.org/10.1002/smll.201602983.
  5. Hieu Bui, Shalin Shah, Reem Mokhtar, Tianqi Song, Sudhanshu Garg, and John Reif. Localized DNA hybridization chain reactions on DNA origami. ACS Nano, 12(2):1146-1155, 2018. URL: https://doi.org/10.1021/acsnano.7b06699.
  6. Gourab Chatterjee, Neil Dalchau, Richard A. Muscat, Andrew Phillips, and Georg Seelig. A spatially localized architecture for fast and modular DNA computing. Nature Nanotechnology, 12:920-927, 2017. URL: https://doi.org/10.1038/nnano.2017.127.
  7. Neil Dalchau, Harish Chandran, Nikhil Gopalkrishnan, Andrew Phillips, and John Reif. Probabilistic analysis of localized DNA hybridization circuits. ACS Synthetic Biology, 4(8):898-913, 2015. URL: https://doi.org/10.1021/acssynbio.5b00044.
  8. Frits Dannenberg, Marta Kwiatkowska, Chris Thachuk, and Andrew J. Turberfield. DNA walker circuits: computational potential, design, and verification. Natural Computing, 14:195-211, 2015. URL: https://doi.org/10.1007/s11047-014-9426-9.
  9. Jonathan P. K. Doye, Thomas E. Ouldridge, Ard A. Louis, Flavio Romano, Petr Šulc, Christian Matek, Benedict E. K. Snodin, Lorenzo Rovigatti, John S. Schreck, Ryan M. Harrison, and William P. J. Smith. Coarse-graining DNA for simulations of DNA nanotechnology. Physical Chemistry Chemical Physics, 15:20395-20414, 2013. URL: https://doi.org/10.1039/C3CP53545B.
  10. Anthony J. Genot, David Yu Zhang, Jonathan Bath, and Andrew J. Turberfield. Remote toehold: A mechanism for flexible control of DNA hybridization kinetics. Journal of the American Chemical Society, 133(7):2177-2182, 2011. URL: https://doi.org/10.1021/ja1073239.
  11. Cheulhee Jung, Peter B. Allen, and Andrew D. Ellington. A simple, cleated DNA walker that hangs on to surfaces. ACS Nano, 11(8):8047-8054, 2017. URL: https://doi.org/10.1021/acsnano.7b02693.
  12. Sarika Kumar and Matthew R. Lakin. A geometric framework for reaction enumeration in computational nucleic acid devices. Journal of the Royal Society Interface, 20(208):20230259, 2023. URL: https://doi.org/10.1098/rsif.2023.0259.
  13. Sarika Kumar, Julian M. Weisburd, and Matthew R. Lakin. Structure sampling for computational estimation of localized DNA interaction rates. Scientific Reports, 11:12730, 2021. URL: https://doi.org/10.1038/s41598-021-92145-8.
  14. Matthew R. Lakin, Loïc Paulevé, and Andrew Phillips. Stochastic simulation of multiple process calculi for biology. Theoretical Computer Science, 431:181-206, 2012. URL: https://doi.org/10.1016/j.tcs.2011.12.057.
  15. Matthew R. Lakin, Rasmus Petersen, Kathryn E. Gray, and Andrew Phillips. Abstract modelling of tethered DNA circuits. In Satoshi Murata and Satoshi Kobayashi, editors, Proceedings of the 20th International Conference on DNA Computing and Molecular Programming, volume 8727 of Lecture Notes in Computer Science, pages 132-147. Springer International Publishing, 2014. URL: https://doi.org/10.1007/978-3-319-11295-4_9.
  16. Matthew R. Lakin and Andrew Phillips. Automated analysis of tethered DNA nanostructures using constraint solving. Natural Computing, 17(4):709-722, 2018. URL: https://doi.org/10.1007/s11047-018-9693-y.
  17. Matthew R. Lakin, Simon Youssef, Luca Cardelli, and Andrew Phillips. Abstractions for DNA circuit design. Journal of the Royal Society Interface, 9(68):460-486, 2012. URL: https://doi.org/10.1098/rsif.2011.0343.
  18. Matthew R. Lakin, Simon Youssef, Filippo Polo, Stephen Emmott, and Andrew Phillips. Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics, 27(22):3211-3213, 2011. URL: https://doi.org/10.1093/bioinformatics/btr543.
  19. Kyle Lund, Anthony J. Manzo, Nadine Dabby, Nicole Michelotti, Alexander Johnson-Buck, Jeanette Nangreave, Steven Taylor, Renjun Pei, Milan N. Stojanovic, Nils G. Walter, Erik Winfree, and Hao Yan. Molecular robots guided by prescriptive landscapes. Nature, 465:206-2010, 2010. URL: https://doi.org/10.1038/nature09012.
  20. Thomas E. Ouldridge, Rollo L. Hoare, Ard A. Louis, Jonathan P. K. Doye, Jonathan Bath, and Andrew J. Turberfield. Optimizing DNA nanotechnology through coarse-grained modeling: A two-footed DNA walker. ACS Nano, 7:2479-2490, 2013. URL: https://doi.org/10.1021/nn3058483.
  21. Jennifer E. Padilla, Ruojie Sha, Martin Kristiansen, Junghuei Chen, Natasha Jonoska, and Nadrian C. Seeman. A signal-passing DNA-strand-exchange mechanism for active self-assembly of DNA nanostructures. Angewandte Chemie International Edition, 54(20):5939-5942, 2015. URL: https://doi.org/10.1002/anie.201500252.
  22. Rasmus L. Petersen, Matthew R. Lakin, and Andrew Phillips. A strand graph semantics for DNA-based computation. Theoretical Computer Science, 632:43-73, 2016. URL: https://doi.org/10.1016/j.tcs.2015.07.041.
  23. Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature, 440:297-302, 2006. URL: https://doi.org/10.1038/nature04586.
  24. Sudheer Sahu, Bei Wang, and John H. Reif. A framework for modeling DNA based molecular systems. Journal of Computational and Theoretical Nanoscience, 5(11):2124-2134, 2008. URL: https://doi.org/10.1166/jctn.2008.1108.
  25. Aditya Sengar, Thomas E. Ouldridge, Oliver Henrich, Lorenzo Rovigatti, and Petr Šulc. A primer on the oxDNA model of DNA: When to use it, how to simulate it and how to interpret the results. Frontiers in Molecular Biosciences, 8:693710, 2021. URL: https://doi.org/10.3389/fmolb.2021.693710.
  26. Friedrich C. Simmel, Bernard Yurke, and Hari R. Singh. Principles and applications of nucleic acid strand displacement reactions. Chemical Reviews, 119(10):6326-6369, 2019. URL: https://doi.org/10.1021/acs.chemrev.8b00580.
  27. Carlo Spaccasassi, Matthew R. Lakin, and Andrew Phillips. A logic programming language for computational nucleic acid devices. ACS Synthetic Biology, 8(7):1530-1547, 2019. URL: https://doi.org/10.1021/acssynbio.8b00229.
  28. Anupama J. Thubagere, Wei Li, Robert F. Johnson, Zibo Chen, Shayan Doroudi, Yae Lim Lee, Gregory Izatt, Sarah Wittman, Niranjan Srinivas, Damien Woods, Erik Winfree, and Lulu Qian. A cargo-sorting DNA robot. Science, 357(6356):eaan6558, 2017. URL: https://doi.org/10.1126/science.aan6558.
  29. Anupama J. Thubagere, Chris Thachuk, Joseph Berleant, Robert F. Johnson, Diana A. Ardelean, Kevin M. Cherry, and Lulu Qian. Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components. Nature Communications, 8:14373, 2017. URL: https://doi.org/10.1038/ncomms14373.
  30. Ye Tian, Yu He, Yi Chen, Peng Yin, and Chengde Mao. A DNAzyme that walks processively and autonomously along a one-dimensional track. Angewandte Chemie International Edition, 44:4355-4358, 2005. URL: https://doi.org/10.1002/anie.200500703.
  31. Michael W. Trosset. Distance matrix completion by numerical optimization. Computational Optimization and Applications, 17:11-22, 2000. URL: https://doi.org/10.1023/A:1008722907820.
  32. Shelley F. J. Wickham, Jonathan Bath, Yousuke Katsuda, Masayuki Endo, Kumi Hidaka, Hiroshi Sugiyama, and Andrew J. Turberfield. A DNA-based molecular motor that can navigate a network of tracks. Nature Nanotechnology, 7:169-173, 2012. URL: https://doi.org/10.1038/nnano.2011.253.
  33. Boyan Yordanov, Jongmin Kim, Rasmus L. Petersen, Angelina Shudy, Vishwesh V. Kulkarni, and Andrew Phillips. Computational design of nucleic acid feedback control circuits. ACS Synthetic Biology, 3(8):600-616, 2014. URL: https://doi.org/10.1021/sb400169s.
  34. David Yu Zhang, Rizal F. Hariadi, Harry M. T. Choi, and Erik Winfree. Integrating DNA strand-displacement circuitry with DNA tile self-assembly. Nature Communications, 4:1965, 2013. URL: https://doi.org/10.1038/ncomms2965.
  35. David Yu Zhang and Georg Seelig. Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chemistry, 3:103-113, 2011. URL: https://doi.org/10.1038/nchem.957.
  36. Fei Zhang, Shuoxing Jiang, Siyu Wu, Yulin Li, Chengde Mao, Yan Liu, and Hao Yan. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nature Nanotechnology, 10:779-784, 2015. URL: https://doi.org/10.1038/nnano.2015.162.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail