The vulnerability of neural networks to adversarial perturbations has necessitated formal verification techniques that can rigorously certify the quality of neural networks. As the state-of-the-art, branch-and-bound (BaB) is a "divide-and-conquer" strategy that applies off-the-shelf verifiers to sub-problems for which they perform better. While BaB can identify the sub-problems that are necessary to be split, it explores the space of these sub-problems in a naive "first-come-first-served" manner, thereby suffering from an issue of inefficiency to reach a verification conclusion. To bridge this gap, we introduce an order over different sub-problems produced by BaB, concerning with their different likelihoods of containing counterexamples. Based on this order, we propose a novel verification framework Oliva that explores the sub-problem space by prioritizing those sub-problems that are more likely to find counterexamples, in order to efficiently reach the conclusion of the verification. Even if no counterexample can be found in any sub-problem, it only changes the order of visiting different sub-problems and so will not lead to a performance degradation. Specifically, Oliva has two variants, including Oliva^GR, a greedy strategy that always prioritizes the sub-problems that are more likely to find counterexamples, and Oliva^SA, a balanced strategy inspired by simulated annealing that gradually shifts from exploration to exploitation to locate the globally optimal sub-problems. We experimentally evaluate the performance of Oliva on 690 verification problems spanning over 5 models with datasets MNIST and CIFAR-10. Compared to the state-of-the-art approaches, we demonstrate the speedup of Oliva for up to 25× in MNIST, and up to 80× in CIFAR-10.
@InProceedings{zhang_et_al:LIPIcs.ECOOP.2025.36, author = {Zhang, Guanqin and Fukuda, Kota and Zhang, Zhenya and Bandara, H.M.N. Dilum and Chen, Shiping and Zhao, Jianjun and Sui, Yulei}, title = {{Efficient Neural Network Verification via Order Leading Exploration of Branch-and-Bound Trees}}, booktitle = {39th European Conference on Object-Oriented Programming (ECOOP 2025)}, pages = {36:1--36:29}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-373-7}, ISSN = {1868-8969}, year = {2025}, volume = {333}, editor = {Aldrich, Jonathan and Silva, Alexandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.36}, URN = {urn:nbn:de:0030-drops-233281}, doi = {10.4230/LIPIcs.ECOOP.2025.36}, annote = {Keywords: neural network verification, branch and bound, counterexample potentiality, simulated annealing, stochastic optimization} }
Feedback for Dagstuhl Publishing