Isocontours in road networks represent the area that is reachable from a source within a given resource limit. We study the problem of computing accurate isocontours in realistic, large-scale networks. We propose isocontours represented by polygons with minimum number of segments that separate reachable and unreachable components of the network. Since the resulting problem is not known to be solvable in polynomial time, we introduce several heuristics that run in (almost) linear time and are simple enough to be implemented in practice. A key ingredient is a new practical linear-time algorithm for minimum-link paths in simple polygons. Experiments in a challenging realistic setting show excellent performance of our algorithms in practice, computing near-optimal solutions in a few milliseconds on average, even for long ranges.
@InProceedings{baum_et_al:LIPIcs.ESA.2016.7, author = {Baum, Moritz and Bl\"{a}sius, Thomas and Gemsa, Andreas and Rutter, Ignaz and Wegner, Franziska}, title = {{Scalable Exact Visualization of Isocontours in Road Networks via Minimum-Link Paths}}, booktitle = {24th Annual European Symposium on Algorithms (ESA 2016)}, pages = {7:1--7:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-015-6}, ISSN = {1868-8969}, year = {2016}, volume = {57}, editor = {Sankowski, Piotr and Zaroliagis, Christos}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.7}, URN = {urn:nbn:de:0030-drops-63498}, doi = {10.4230/LIPIcs.ESA.2016.7}, annote = {Keywords: isocontours, separating polygons, minimum-link paths} }
Feedback for Dagstuhl Publishing