Temporal Clustering

Authors Tamal K. Dey, Alfred Rossi, Anastasios Sidiropoulos



PDF
Thumbnail PDF

File

LIPIcs.ESA.2017.34.pdf
  • Filesize: 0.7 MB
  • 14 pages

Document Identifiers

Author Details

Tamal K. Dey
Alfred Rossi
Anastasios Sidiropoulos

Cite AsGet BibTex

Tamal K. Dey, Alfred Rossi, and Anastasios Sidiropoulos. Temporal Clustering. In 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 87, pp. 34:1-34:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.ESA.2017.34

Abstract

We study the problem of clustering sequences of unlabeled point sets taken from a common metric space. Such scenarios arise naturally in applications where a system or process is observed in distinct time intervals, such as biological surveys and contagious disease surveillance. In this more general setting existing algorithms for classical (i.e. static) clustering problems are not applicable anymore. We propose a set of optimization problems which we collectively refer to as temporal clustering. The quality of a solution to a temporal clustering instance can be quantified using three parameters: the number of clusters k, the spatial clustering cost r, and the maximum cluster displacement delta between consecutive time steps. We consider spatial clustering costs which generalize the well-studied k-center, discrete k-median, and discrete k-means objectives of classical clustering problems. We develop new algorithms that achieve trade-offs between the three objectives k, r, and delta. Our upper bounds are complemented by inapproximability results.
Keywords
  • clustering
  • multi-objective optimization
  • dynamic metric spaces
  • moving point sets
  • approximation algorithms
  • hardness of approximation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Mohammad Ali Abam and Mark de Berg. Kinetic spanners in rd. In Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry, SCG'09, pages 43-50, New York, NY, USA, 2009. ACM. URL: http://dx.doi.org/10.1145/1542362.1542371.
  2. Pankaj K. Agarwal, Leonidas J. Guibas, Herbert Edelsbrunner, Jeff Erickson, Michael Isard, Sariel Har-Peled, John Hershberger, Christian S. Jensen, Lydia E. Kavraki, Patrice Koehl, Ming C. Lin, Dinesh Manocha, Dimitris N. Metaxas, Brian Mirtich, David M. Mount, S. Muthukrishnan, Dinesh K. Pai, Elisha Sacks, Jack Snoeyink, Subhash Suri, and Ouri Wolfson. Algorithmic issues in modeling motion. ACM Comput. Surv., 34(4):550-572, 2002. URL: http://dx.doi.org/10.1145/592642.592647.
  3. Alfred V. Aho and David Lee. Efficient algorithms for constructing testing sets, covering paths, and minimum flows. AT&T Bell Laboratories Tech. Memo, 159, 1987. Google Scholar
  4. David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027-1035. Society for Industrial and Applied Mathematics, 2007. Google Scholar
  5. Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM Journal on computing, 33(3):544-562, 2004. Google Scholar
  6. Julien Basch, Leonidas J. Guibas, and John Hershberger. Data structures for mobile data. In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA'97, pages 747-756, Philadelphia, PA, USA, 1997. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=314161.314435.
  7. Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, pcps, and nonapproximability - towards tight results. SIAM J. Comput., 27(3):804-915, June 1998. URL: http://dx.doi.org/10.1137/S0097539796302531.
  8. Sergio Cabello, Panos Giannopoulos, Christian Knauer, Dániel Marx, and Günter Rote. Geometric clustering: fixed-parameter tractability and lower bounds with respect to the dimension. ACM Transactions on Algorithms (TALG), 7(4):43, 2011. Google Scholar
  9. Tamal K. Dey, Alfred Rossi, and Anastasios Sidiropoulos. Temporal clustering. CoRR, abs/1704.05964, 2017. URL: http://arxiv.org/abs/1704.05964.
  10. Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC'14, pages 624-633, New York, NY, USA, 2014. ACM. URL: http://dx.doi.org/10.1145/2591796.2591884.
  11. Anne Driemel, Amer Krivošija, and Christian Sohler. Clustering time series under the Fréachet distance. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages 766-785. SIAM, 2016. Google Scholar
  12. Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM), 45(4):634-652, 1998. Google Scholar
  13. Edward W Forgy. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics, 21:768-769, 1965. Google Scholar
  14. Sorelle A. Friedler and David M. Mount. Approximation algorithm for the kinetic robust k-center problem. Comput. Geom. Theory Appl., 43(6-7):572-586, August 2010. URL: http://dx.doi.org/10.1016/j.comgeo.2010.01.001.
  15. Harold N. Gabow and Robert Endre Tarjan. Faster scaling algorithms for network problems. SIAM J. Comput., 18(5):1013-1036, 1989. URL: http://dx.doi.org/10.1137/0218069.
  16. Jie Gao, Leonidas J. Guibas, and An Nguyen. Deformable spanners and applications. Comput. Geom. Theory Appl., 35(1-2):2-19, August 2006. URL: http://dx.doi.org/10.1016/j.comgeo.2005.10.001.
  17. Leonidas J. Guibas. Kinetic data structures: A state of the art report. In Proceedings of the Third Workshop on the Algorithmic Foundations of Robotics on Robotics : The Algorithmic Perspective: The Algorithmic Perspective, WAFR'98, pages 191-209, Natick, MA, USA, 1998. A. K. Peters, Ltd. URL: http://dl.acm.org/citation.cfm?id=298960.299007.
  18. Sariel Har-Peled. Clustering motion. Discrete &Computational Geometry, 31(4):545-565, 2004. Google Scholar
  19. Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clustering. Discrete & Computational Geometry, 37(1):3-19, 2007. URL: http://dx.doi.org/10.1007/s00454-006-1271-x.
  20. Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pages 291-300. ACM, 2004. Google Scholar
  21. Sariel Har-Peled and Bardia Sadri. How fast is the k-means method? Algorithmica, 41(3):185-202, 2005. Google Scholar
  22. Teresa W Haynes, Stephen Hedetniemi, and Peter Slater. Fundamentals of domination in graphs. CRC Press, 1998. Google Scholar
  23. Dorit S Hochbaum and David B Shmoys. A best possible heuristic for the k-center problem. Mathematics of operations research, 10(2):180-184, 1985. Google Scholar
  24. Anil K Jain and Richard C Dubes. Algorithms for clustering data. Prentice-Hall, Inc., 1988. Google Scholar
  25. David S Johnson. Approximation algorithms for combinatorial problems. Journal of computer and system sciences, 9(3):256-278, 1974. Google Scholar
  26. Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman, and Angela Y Wu. A local search approximation algorithm for k-means clustering. In Proceedings of the eighteenth annual symposium on Computational geometry, pages 10-18. ACM, 2002. Google Scholar
  27. Stavros G Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme for the euclidean k-median problem. SIAM Journal on Computing, 37(3):757-782, 2007. Google Scholar
  28. Madhukar R Korupolu, C Greg Plaxton, and Rajmohan Rajaraman. Analysis of a local search heuristic for facility location problems. Journal of algorithms, 37(1):146-188, 2000. Google Scholar
  29. Stuart P Lloyd. Least squares quantization in pcm. Information Theory, IEEE Transactions on, 28(2):129-137, 1982. Google Scholar
  30. Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization problems. Journal of the ACM (JACM), 41(5):960-981, 1994. Google Scholar
  31. Mikkel Thorup. Quick k-median, k-center, and facility location for sparse graphs. In Automata, Languages and Programming, pages 249-260. Springer, 2001. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail