Document

# Finding Axis-Parallel Rectangles of Fixed Perimeter or Area Containing the Largest Number of Points

## File

LIPIcs.ESA.2017.52.pdf
• Filesize: 0.49 MB
• 13 pages

## Cite As

Haim Kaplan, Sasanka Roy, and Micha Sharir. Finding Axis-Parallel Rectangles of Fixed Perimeter or Area Containing the Largest Number of Points. In 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 87, pp. 52:1-52:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)
https://doi.org/10.4230/LIPIcs.ESA.2017.52

## Abstract

Let P be a set of n points in the plane in general position, and consider the problem of finding an axis-parallel rectangle with a given perimeter, or area, or diagonal, that encloses the maximum number of points of P. We present an exact algorithm that finds such a rectangle in O(n^{5/2} log n) time, and, for the case of a fixed perimeter or diagonal, we also obtain (i) an improved exact algorithm that runs in O(nk^{3/2} log k) time, and (ii) an approximation algorithm that finds, in O(n+(n/(k epsilon^5))*log^{5/2}(n/k)log((1/epsilon) log(n/k))) time, a rectangle of the given perimeter or diagonal that contains at least (1-epsilon)k points of P, where k is the optimum value. We then show how to turn this algorithm into one that finds, for a given k, an axis-parallel rectangle of smallest perimeter (or area, or diagonal) that contains k points of P. We obtain the first subcubic algorithms for these problems, significantly improving the current state of the art.
##### Keywords
• Computational geometry
• geometric optimization
• rectangles
• perimeter
• area

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Finding k points with minimum diameter and related problems. J. Algorithms, 12(1):38-56, 1991.
2. N. Bansal and S. Garg. Algorithmic discrepancy beyond partial coloring. In Proc. of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 914-926, 2017.
3. Y-J. Chiang and R. Tamassia. Dynamic algorithms in computational geometry. Proc. IEEE, 80(9):1412-1434, 1992.
4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press, 3rd edition, 2009.
5. A. Datta, H.P. Lenhof, C. Schwarz, and M. Smid. Static and dynamic algorithms for k-point clustering problems. J. Algorithms, 19(3):474-503, 1995.
6. M. de Berg, S. Cabello, O. Cheong, D. Eppstein, and C. Knauer. Covering many points with a small-area box. CoRR, abs/1612.02149, 2016.
7. D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal polytopes. Discrete Comput. Geom., 11(3):321-350, 1994.
8. G. N. Frederickson and D. B. Johnson. The complexity of selection and ranking in X + Y and matrices with sorted columns. J. Comput. Syst. Sci., 24(2):197-208, 1982.
9. G. N. Frederickson and D. B. Johnson. Finding kth paths and p-centers by generating and searching good data structures. J. Algorithms, 4(1):61-80, 1983.
10. G. N. Frederickson and D. B. Johnson. Generalized selection and ranking: Sorted matrices. SIAM J. Comput., 13(1):14-30, 1984.
11. S. Har-peled. Geometric Approximation Algorithms. American Mathematical Society, Boston, MA, USA, 2011.
12. H. Imai and T. Asano. Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane. J. Algorithms, 4(4):310-323, 1983.
13. A. Mirzaian and E. Arjomandi. Selection in X + Y and matrices with sorted rows and columns. Information Processing Letters, 20(1):13-17, 1985.
14. S.C. Nandy and B.B. Bhattacharya. A unified algorithm for finding maximum and minimum object enclosing rectangles and cuboids. Computers Math. Applic., 29(8):45-61, 1995.
15. M. Segal and K. Kedem. Enclosing k points in the smallest axis parallel rectangle. Inform. Process. Letts., 65(2):95-99, 1998.
X

Feedback for Dagstuhl Publishing