In the colored orthogonal range reporting problem, we want a data structure for storing n colored points so that given a query axis-aligned rectangle, we can report the distinct colors among the points inside the rectangle. This natural problem has been studied in a series of papers, but most prior work focused on the static case. In this paper, we give a dynamic data structure in the 2D case which can answer queries in O(log^{1+o(1)} n + klog^{1/2+o(1)}n) time, where k denotes the output size (the number of distinct colors in the query range), and which can support insertions and deletions in O(log^{2+o(1)}n) time (amortized) in the standard RAM model. This is the first fully dynamic structure with polylogarithmic update time whose query cost per color reported is sublogarithmic (near √{log n}). We also give an alternative data structure with O(log^{1+o(1)} n + klog^{3/4+o(1)}n) query time and O(log^{3/2+o(1)}n) update time (amortized). We also mention extensions to higher constant dimensions.
@InProceedings{chan_et_al:LIPIcs.ESA.2021.28, author = {Chan, Timothy M. and Huang, Zhengcheng}, title = {{Dynamic Colored Orthogonal Range Searching}}, booktitle = {29th Annual European Symposium on Algorithms (ESA 2021)}, pages = {28:1--28:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-204-4}, ISSN = {1868-8969}, year = {2021}, volume = {204}, editor = {Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.28}, URN = {urn:nbn:de:0030-drops-146090}, doi = {10.4230/LIPIcs.ESA.2021.28}, annote = {Keywords: Range searching, dynamic data structures, word RAM} }
Feedback for Dagstuhl Publishing