Data Structures Lower Bounds and Popular Conjectures

Authors Pavel Dvořák, Michal Koucký, Karel Král, Veronika Slívová



PDF
Thumbnail PDF

File

LIPIcs.ESA.2021.39.pdf
  • Filesize: 0.78 MB
  • 15 pages

Document Identifiers

Author Details

Pavel Dvořák
  • Charles University, Prague, Czech Republic
Michal Koucký
  • Charles University, Prague, Czech Republic
Karel Král
  • Charles University, Prague, Czech Republic
Veronika Slívová
  • Charles University, Prague, Czech Republic

Acknowledgements

We would like to thank to Mike Saks and Sagnik Mukhopadhyay for insightful discussions.

Cite AsGet BibTex

Pavel Dvořák, Michal Koucký, Karel Král, and Veronika Slívová. Data Structures Lower Bounds and Popular Conjectures. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 39:1-39:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.ESA.2021.39

Abstract

In this paper, we investigate the relative power of several conjectures that attracted recently lot of interest. We establish a connection between the Network Coding Conjecture (NCC) of Li and Li [Li and Li, 2004] and several data structure problems such as non-adaptive function inversion of Hellman [M. Hellman, 1980] and the well-studied problem of polynomial evaluation and interpolation. In turn these data structure problems imply super-linear circuit lower bounds for explicit functions such as integer sorting and multi-point polynomial evaluation.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational complexity and cryptography
Keywords
  • Data structures
  • Circuits
  • Lower bounds
  • Network Coding Conjecture

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Hamza Abusalah, Joël Alwen, Bram Cohen, Danylo Khilko, Krzysztof Pietrzak, and Leonid Reyzin. Beyond hellman’s time-memory trade-offs with applications to proofs of space. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part II, volume 10625 of Lecture Notes in Computer Science, pages 357-379. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-70697-9_13.
  2. Micah Adler, Nicholas J. A. Harvey, Kamal Jain, Robert Kleinberg, and April Rasala Lehman. On the capacity of information networks. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA '06, page 241–250, USA, 2006. Society for Industrial and Applied Mathematics. Google Scholar
  3. Peyman Afshani, Casper Benjamin Freksen, Lior Kamma, and Kasper Green Larsen. Lower Bounds for Multiplication via Network Coding. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1-10:12, Dagstuhl, Germany, 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.10.
  4. Gilad Asharov, Wei-Kai Lin, and Elaine Shi. Sorting short keys in circuits of size o (n log n). In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2249-2268. SIAM, 2021. Google Scholar
  5. Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC '88, page 301–309, New York, NY, USA, 1988. Association for Computing Machinery. URL: https://doi.org/10.1145/62212.62241.
  6. Michael Clausen, Andreas Dress, Johannes Grabmeier, and Marek Karpinski. On zero-testing and interpolation of k-sparse multivariate polynomials over finite fields. Theor. Comput. Sci., 84(2):151–164, July 1991. URL: https://doi.org/10.1016/0304-3975(91)90157-W.
  7. James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier series. Mathematics of computation, 19(90):297-301, 1965. Google Scholar
  8. Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John Steinberger. Random oracles and non-uniformity. In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, 2018 Proceedings, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pages 227-258. Springer Verlag, 2018. 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2018 ; Conference date: 29-04-2018 Through 03-05-2018. URL: https://doi.org/10.1007/978-3-319-78381-9_9.
  9. Henry Corrigan-Gibbs and Dmitry Kogan. The function-inversion problem: Barriers and opportunities. In Dennis Hofheinz and Alon Rosen, editors, Theory of Cryptography, pages 393-421, Cham, 2019. Springer International Publishing. Google Scholar
  10. Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks against one-way functions and prgs. In Tal Rabin, editor, Advances in Cryptology - CRYPTO 2010, pages 649-665, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. Google Scholar
  11. Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the concrete: Random oracles with auxiliary input, revisited. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology - EUROCRYPT 2017, pages 473-495, Cham, 2017. Springer International Publishing. Google Scholar
  12. Pavel Dvořák, Michal Koucký, Karel Král, and Veronika Slívová. Data structures lower bounds and popular conjectures, 2021. URL: http://arxiv.org/abs/2102.09294.
  13. Alireza Farhadi, MohammadTaghi Hajiaghayi, Kasper Green Larsen, and Elaine Shi. Lower bounds for external memory integer sorting via network coding. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, page 997–1008, New York, NY, USA, 2019. Association for Computing Machinery. URL: https://doi.org/10.1145/3313276.3316337.
  14. Amos Fiat and Moni Naor. Rigorous time/space trade-offs for inverting functions. SIAM J. Comput., 29(3):790–803, 1999. URL: https://doi.org/10.1137/S0097539795280512.
  15. Anna Gál and Peter Bro Miltersen. The cell probe complexity of succinct data structures. In Jos C. M. Baeten, Jan Karel Lenstra, Joachim Parrow, and Gerhard J. Woeginger, editors, Automata, Languages and Programming, pages 332-344, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. Google Scholar
  16. Joachim von zur Gathen and Jrgen Gerhard. Modern Computer Algebra. Cambridge University Press, USA, 3rd edition, 2013. Google Scholar
  17. Rosario Gennaro, Yael Gertner, Jonathan Katz, and Luca Trevisan. Bounds on the efficiency of generic cryptographic constructions. SIAM J. Comput., 35(1):217–246, 2005. URL: https://doi.org/10.1137/S0097539704443276.
  18. Dima Grigoryev, Marek Karpinski, and Michael Singer. Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields. SIAM J. Comput., 19:1059-1063, December 1990. URL: https://doi.org/10.1137/0219073.
  19. M. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Information Theory, 26(4):401-406, 1980. URL: https://doi.org/10.1109/TIT.1980.1056220.
  20. Gábor Ivanyos, Marek Karpinski, Miklos Santha, Nitin Saxena, and Igor E. Shparlinski. Polynomial interpolation and identity testing from high powers over finite fields. Algorithmica, 80(2):560–575, 2018. URL: https://doi.org/10.1007/s00453-016-0273-1.
  21. Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer Science & Business Media, 2012. Google Scholar
  22. K. S. Kedlaya and C. Umans. Fast modular composition in any characteristic. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pages 146-155, 2008. URL: https://doi.org/10.1109/FOCS.2008.13.
  23. Kasper Green Larsen. Higher cell probe lower bounds for evaluating polynomials. In Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, FOCS '12, page 293–301, USA, 2012. IEEE Computer Society. URL: https://doi.org/10.1109/FOCS.2012.21.
  24. Kasper Green Larsen, Omri Weinstein, and Huacheng Yu. Crossing the logarithmic barrier for dynamic boolean data structure lower bounds. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, page 978–989, New York, NY, USA, 2018. Association for Computing Machinery. URL: https://doi.org/10.1145/3188745.3188790.
  25. Zongpeng Li and Baochun Li. Network coding: The case of multiple unicast sessions. Proceedings of the 42nd Allerton Annual Conference on Communication, Control, and Computing, October 2004. Google Scholar
  26. Peter Bro Miltersen. On the cell probe complexity of polynomial evaluation. Theor. Comput. Sci., 143(1):167–174, 1995. URL: https://doi.org/10.1016/0304-3975(95)80032-5.
  27. John M Pollard. The fast fourier transform in a finite field. Mathematics of computation, 25(114):365-374, 1971. Google Scholar
  28. Jean-Pierre Serre. A course in arithmetic, volume 7. Springer Science & Business Media, 2012. Google Scholar
  29. A. Smoktunowicz, I. Wróbel, and P. Kosowski. A new efficient algorithm for polynomial interpolation. Computing, 79(1):33–52, February 2007. URL: https://doi.org/10.1007/s00607-006-0185-z.
  30. Dominique Unruh. Random oracles and auxiliary input. In Alfred Menezes, editor, Advances in Cryptology - CRYPTO 2007, pages 205-223, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg. Google Scholar
  31. Leslie G Valiant. Graph-theoretic arguments in low-level complexity. In International Symposium on Mathematical Foundations of Computer Science, pages 162-176. Springer, 1977. Google Scholar
  32. Leslie G Valiant. Exponential lower bounds for restricted monotone circuits. In Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages 110-117, 1983. Google Scholar
  33. Leslie G Valiant. Why is boolean complexity theory difficult. Boolean Function Complexity, 169(84-94):4, 1992. Google Scholar
  34. Emanuele Viola. On the power of small-depth computation. Found. Trends Theor. Comput. Sci., 5(1):1–72, 2009. Google Scholar
  35. Emanuele Viola. Lower bounds for data structures with space close to maximum imply circuit lower bounds. Theory of Computing, 15(18):1-9, 2019. URL: https://doi.org/10.4086/toc.2019.v015a018.
  36. A. C.-C. Yao. Coherent functions and program checkers. In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC '90, page 84–94, New York, NY, USA, 1990. Association for Computing Machinery. URL: https://doi.org/10.1145/100216.100226.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail