Document

# A Simple Algorithm for Graph Reconstruction

## File

LIPIcs.ESA.2021.68.pdf
• Filesize: 0.91 MB
• 18 pages

## Acknowledgements

We want to thank the anonymous reviewers for their valuable comments.

## Cite As

Claire Mathieu and Hang Zhou. A Simple Algorithm for Graph Reconstruction. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 68:1-68:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.ESA.2021.68

## Abstract

How efficiently can we find an unknown graph using distance queries between its vertices? We assume that the unknown graph is connected, unweighted, and has bounded degree. The goal is to find every edge in the graph. This problem admits a reconstruction algorithm based on multi-phase Voronoi-cell decomposition and using Õ(n^{3/2}) distance queries [Kannan et al., 2018]. In our work, we analyze a simple reconstruction algorithm. We show that, on random Δ-regular graphs, our algorithm uses Õ(n) distance queries. As by-products, we can reconstruct those graphs using O(log² n) queries to an all-distances oracle or Õ(n) queries to a betweenness oracle, and we bound the metric dimension of those graphs by log² n. Our reconstruction algorithm has a very simple structure, and is highly parallelizable. On general graphs of bounded degree, our reconstruction algorithm has subquadratic query complexity.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Graph algorithms analysis
• Theory of computation → Random network models
• Networks → Network algorithms
##### Keywords
• reconstruction
• network topology
• random regular graphs
• metric dimension

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Mikkel Abrahamsen, Greg Bodwin, Eva Rotenberg, and Morten Stöckel. Graph Reconstruction with a Betweenness Oracle. In Symposium on Theoretical Aspects of Computer Science, pages 5:1-5:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.
2. Dimitris Achlioptas, Aaron Clauset, David Kempe, and Cristopher Moore. On the bias of traceroute sampling: Or, power-law degree distributions in regular graphs. Journal of the ACM, 56(4):21:1-21:28, 2009.
3. Ramtin Afshar, Michael T. Goodrich, Pedro Matias, and Martha C. Osegueda. Reconstructing biological and digital phylogenetic trees in parallel. In European Symposium on Algorithms, volume 173, pages 3:1-3:24. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.
4. Animashree Anandkumar, Avinatan Hassidim, and Jonathan Kelner. Topology discovery of sparse random graphs with few participants. Random Structures & Algorithms, 43(1):16-48, 2013.
5. Robert F. Bailey and Peter J. Cameron. Base size, metric dimension and other invariants of groups and graphs. Bulletin of the London Mathematical Society, 43(2):209-242, 2011.
6. Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286(5439):509-512, 1999.
7. Zuzana Beerliova, Felix Eberhard, Thomas Erlebach, Alexander Hall, Michael Hoffmann, Matús Mihal'ak, and L. Shankar Ram. Network discovery and verification. IEEE Journal on Selected Areas in Communications, 24(12):2168-2181, 2006.
8. Vincent D. Blondel, Jean-Loup Guillaume, Julien M. Hendrickx, and Raphaël M. Jungers. Distance distribution in random graphs and application to network exploration. Physical Review E, 76(6):066101, 2007.
9. Béla Bollobás. A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European Journal of Combinatorics, 1(4):311-316, 1980.
10. Béla Bollobás. Distinguishing vertices of random graphs. North-Holland Mathematics Studies, 62:33-49, 1982.
11. Béla Bollobás, Dieter Mitsche, and Paweł Prałat. Metric dimension for random graphs. The Electronic Journal of Combinatorics, 20(4):P1, 2013.
12. Gary Chartrand, Linda Eroh, Mark A. Johnson, and Ortrud R. Oellermann. Resolvability in graphs and the metric dimension of a graph. Discrete Applied Mathematics, 105(1-3):99-113, 2000.
13. José Cáceres, Carmen Hernando, Mercè Mora, Ignacio M. Pelayo, María L. Puertas, Carlos Seara, and David R. Wood. On the metric dimension of cartesian products of graphs. SIAM Journal on Discrete Mathematics, 21(2):423-441, 2007.
14. Thomas Erlebach, Alexander Hall, Michael Hoffmann, and Matúš Mihal'ák. Network discovery and verification with distance queries. Algorithms and Complexity, pages 69-80, 2006.
15. Thomas Erlebach, Alexander Hall, and Matúš Mihal’ák. Approximate discovery of random graphs. In International Symposium on Stochastic Algorithms, pages 82-92. Springer, 2007.
16. Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relationships of the internet topology. ACM SIGCOMM, 29(4):251–262, 1999.
17. Florent Foucaud and Guillem Perarnau. Bounds for identifying codes in terms of degree parameters. Electronic Journal of Combinatorics, 19(P32), 2012.
18. Alan Frieze and Michał Karoński. Introduction to random graphs. URL: https://www.math.cmu.edu/~af1p/BOOK.pdf.
19. Alan Frieze, Ryan Martin, Julien Moncel, Miklós Ruszinkó, and Cliff Smyth. Codes identifying sets of vertices in random networks. Discrete Mathematics, 307(9):1094-1107, 2007.
20. Jean-Loup Guillaume and Matthieu Latapy. Complex network metrology. Complex systems, 16(1):83, 2005.
21. Frank Harary and Robert A. Melter. On the metric dimension of a graph. Ars Combinatoria, 2(191-195), 1976.
22. Jotun J. Hein. An optimal algorithm to reconstruct trees from additive distance data. Bulletin of Mathematical Biology, 51(5):597-603, 1989.
23. Carmen Hernando, Merce Mora, Ignacio M. Pelayo, Carlos Seara, and David R. Wood. Extremal graph theory for metric dimension and diameter. Electronic Notes in Discrete Mathematics, 29:339-343, 2007. European Conference on Combinatorics, Graph Theory and Applications.
24. Imran Javaid, M. Tariq Rahim, and Kashif Ali. Families of regular graphs with constant metric dimension. Utilitas mathematica, 75:21-34, 2008.
25. Mihajlo Jovanović, Fred Annexstein, and Kenneth Berman. Modeling peer-to-peer network topologies through small-world models and power laws. In IX Telecommunications Forum, TELFOR, pages 1-4. Citeseer, 2001.
26. Sampath Kannan, Eugene L. Lawler, and Tandy Warnow. Determining the evolutionary tree using experiments. Journal of Algorithms, 21(1):26-50, 1996.
27. Sampath Kannan, Claire Mathieu, and Hang Zhou. Graph reconstruction and verification. ACM Transactions on Algorithms, 14(4):1-30, 2018.
28. Mark G. Karpovsky, Krishnendu Chakrabarty, and Lev B. Levitin. On a new class of codes for identifying vertices in graphs. IEEE Transactions on Information Theory, 44(2):599-611, 1998.
29. Samir Khuller, Balaji Raghavachari, and Azriel Rosenfeld. Landmarks in graphs. Discrete applied mathematics, 70(3):217-229, 1996.
30. Valerie King, Li Zhang, and Yunhong Zhou. On the complexity of distance-based evolutionary tree reconstruction. In Symposium on Discrete Algorithms, pages 444-453. SIAM, 2003.
31. Anukool Lakhina, John W. Byers, Mark Crovella, and Peng Xie. Sampling biases in IP topology measurements. In Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies, volume 1, pages 332-341. IEEE, 2003.
32. Dieter Mitsche and Juanjo Rué. On the limiting distribution of the metric dimension for random forests. European Journal of Combinatorics, 49:68-89, 2015.
33. Elchanan Mossel and Jiaming Xu. Seeded graph matching via large neighborhood statistics. Random Structures & Algorithms, 57(3):570-611, 2020.
34. Mark E. J. Newman, Duncan J. Watts, and Steven H. Strogatz. Random graph models of social networks. Proceedings of the national academy of sciences, 99(suppl 1):2566-2572, 2002.
35. Gergely Odor and Patrick Thiran. Sequential metric dimension for random graphs, 2020. URL: http://arxiv.org/abs/1910.10116.
36. Ortrud R. Oellermann and Joel Peters-Fransen. The strong metric dimension of graphs and digraphs. Discrete Applied Mathematics, 155(3):356-364, 2007.
37. Yunior Ramírez-Cruz, Ortrud R. Oellermann, and Juan A. Rodríguez-Velázquez. The simultaneous metric dimension of graph families. Discrete Applied Mathematics, 198:241-250, 2016.
38. Lev Reyzin and Nikhil Srivastava. Learning and verifying graphs using queries with a focus on edge counting. In Algorithmic Learning Theory, pages 285-297. Springer, 2007.
39. Guozhen Rong, Wenjun Li, Yongjie Yang, and Jianxin Wang. Reconstruction and verification of chordal graphs with a distance oracle. Theoretical Computer Science, 859:48-56, 2021.
40. András Sebő and Eric Tannier. On metric generators of graphs. Mathematics of Operations Research, 29(2):383-393, 2004.
41. Sandeep Sen and V. N. Muralidhara. The covert set-cover problem with application to network discovery. In WALCOM, pages 228-239. Springer, 2010.
42. Peter J. Slater. Leaves of trees. In Southeastern Conference on Combinatorics, Graph Theory, and Computing, pages 549-559, 1975.
43. Michael S. Waterman, Temple F. Smith, M. Singh, and W. A. Beyer. Additive evolutionary trees. Journal of Theoretical Biology, 64(2):199-213, 1977.
44. Nicholas C. Wormald. Models of random regular graphs. London Mathematical Society Lecture Note Series, pages 239-298, 1999.