Isomorphism Testing Parameterized by Genus and Beyond

Author Daniel Neuen



PDF
Thumbnail PDF

File

LIPIcs.ESA.2021.72.pdf
  • Filesize: 0.76 MB
  • 18 pages

Document Identifiers

Author Details

Daniel Neuen
  • CISPA Helmholtz Center for Information Security, Saarland Informatics Campus, Saarbrücken, Germany

Cite AsGet BibTex

Daniel Neuen. Isomorphism Testing Parameterized by Genus and Beyond. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 72:1-72:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.ESA.2021.72

Abstract

We present an isomorphism test for graphs of Euler genus g running in time 2^{{O}(g⁴ log g)}n^{{O}(1)}. Our algorithm provides the first explicit upper bound on the dependence on g for an fpt isomorphism test parameterized by the Euler genus of the input graphs. The only previous fpt algorithm runs in time f(g)n for some function f (Kawarabayashi 2015). Actually, our algorithm even works when the input graphs only exclude K_{3,h} as a minor. For such graphs, no fpt isomorphism test was known before. The algorithm builds on an elegant combination of simple group-theoretic, combinatorial, and graph-theoretic approaches. In particular, we introduce (t,k)-WL-bounded graphs which provide a powerful tool to combine group-theoretic techniques with the standard Weisfeiler-Leman algorithm. This concept may be of independent interest.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
  • Theory of computation → Graph algorithms analysis
  • Mathematics of computing → Graphs and surfaces
Keywords
  • graph isomorphism
  • fixed-parameter tractability
  • Euler genus
  • Weisfeiler-Leman algorithm

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 684-697. ACM, 2016. URL: https://doi.org/10.1145/2897518.2897542.
  2. László Babai, Peter J. Cameron, and Péter P. Pálfy. On the orders of primitive groups with restricted nonabelian composition factors. J. Algebra, 79(1):161-168, 1982. URL: https://doi.org/10.1016/0021-8693(82)90323-4.
  3. László Babai, William M. Kantor, and Eugene M. Luks. Computational complexity and the classification of finite simple groups. In 24th Annual Symposium on Foundations of Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages 162-171. IEEE Computer Society, 1983. URL: https://doi.org/10.1109/SFCS.1983.10.
  4. Hans L. Bodlaender. Polynomial algorithms for graph isomorphism and chromatic index on partial k-trees. J. Algorithms, 11(4):631-643, 1990. URL: https://doi.org/10.1016/0196-6774(90)90013-5.
  5. Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables for graph identification. Comb., 12(4):389-410, 1992. URL: https://doi.org/10.1007/BF01305232.
  6. John D. Dixon and Brian Mortimer. Permutation Groups, volume 163 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1996. URL: https://doi.org/10.1007/978-1-4612-0731-3.
  7. Martin Grohe and Dániel Marx. Structure theorem and isomorphism test for graphs with excluded topological subgraphs. SIAM J. Comput., 44(1):114-159, 2015. URL: https://doi.org/10.1137/120892234.
  8. Martin Grohe, Daniel Neuen, Pascal Schweitzer, and Daniel Wiebking. An improved isomorphism test for bounded-tree-width graphs. ACM Trans. Algorithms, 16(3):34:1-34:31, 2020. URL: https://doi.org/10.1145/3382082.
  9. Martin Grohe and Pascal Schweitzer. Isomorphism testing for graphs of bounded rank width. In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1010-1029. IEEE Computer Society, 2015. URL: https://doi.org/10.1109/FOCS.2015.66.
  10. Martin Grohe, Daniel Wiebking, and Daniel Neuen. Isomorphism testing for graphs excluding small minors. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 625-636. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00064.
  11. John E. Hopcroft and Robert Endre Tarjan. Isomorphism of planar graphs. In Raymond E. Miller and James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 131-152. Plenum Press, New York, 1972. URL: https://doi.org/10.1007/978-1-4684-2001-2_13.
  12. Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph canonization. In Alan L. Selman, editor, Complexity Theory Retrospective: In Honor of Juris Hartmanis on the Occasion of His Sixtieth Birthday, July 5, 1988, pages 59-81. Springer New York, New York, NY, 1990. URL: https://doi.org/10.1007/978-1-4612-4478-3_5.
  13. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85-103. Plenum Press, New York, 1972. URL: https://doi.org/10.1007/978-1-4684-2001-2_9.
  14. Ken-ichi Kawarabayashi. Graph isomorphism for bounded genus graphs in linear time. CoRR, abs/1511.02460, 2015. URL: http://arxiv.org/abs/1511.02460.
  15. Ken-ichi Kawarabayashi and Bojan Mohar. Graph and map isomorphism and all polyhedral embeddings in linear time. In Cynthia Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 471-480. ACM, 2008. URL: https://doi.org/10.1145/1374376.1374443.
  16. Ken-ichi Kawarabayashi, Bojan Mohar, Roman Nedela, and Peter Zeman. Automorphism groups of maps in linear time. CoRR, abs/2008.01616, 2020. URL: http://arxiv.org/abs/2008.01616.
  17. Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth. SIAM J. Comput., 46(1):161-189, 2017. URL: https://doi.org/10.1137/140999980.
  18. Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput. Syst. Sci., 25(1):42-65, 1982. URL: https://doi.org/10.1016/0022-0000(82)90009-5.
  19. Rudolf Mathon. A note on the graph isomorphism counting problem. Inf. Process. Lett., 8(3):131-132, 1979. URL: https://doi.org/10.1016/0020-0190(79)90004-8.
  20. Gary L. Miller. Isomorphism of graphs which are pairwise k-separable. Inf. Control., 56(1/2):21-33, 1983. URL: https://doi.org/10.1016/S0019-9958(83)80048-5.
  21. Daniel Neuen. Hypergraph isomorphism for groups with restricted composition factors. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 88:1-88:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ICALP.2020.88.
  22. Daniel Neuen. Isomorphism testing for graphs excluding small topological subgraphs. CoRR, abs/2011.14730, 2020. URL: http://arxiv.org/abs/2011.14730.
  23. Ilia N. Ponomarenko. The isomorphism problem for classes of graphs. Dokl. Akad. Nauk SSSR, 304(3):552-556, 1989. Google Scholar
  24. Ilia N. Ponomarenko. The isomorphism problem for classes of graphs closed under contraction. Journal of Soviet Mathematics, 55(2):1621-1643, June 1991. URL: https://doi.org/10.1007/BF01098279.
  25. Gerhard Ringel. Das geschlecht des vollständigen paaren graphen. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 28(3):139-150, October 1965. URL: https://doi.org/10.1007/BF02993245.
  26. Joseph J. Rotman. An Introduction to the Theory of Groups, volume 148 of Graduate Texts in Mathematics. Springer-Verlag, New York, fourth edition, 1995. URL: https://doi.org/10.1007/978-1-4612-4176-8.
  27. Ákos Seress. Permutation Group Algorithms, volume 152 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2003. URL: https://doi.org/10.1017/CBO9780511546549.
  28. Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra which appears therein. NTI, Series 2, 1968. English translation by Grigory Ryabov available at URL: https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail