In the Connected ℱ-Deletion problem, ℱ is a fixed finite family of graphs and the objective is to compute a minimum set of vertices (or a vertex set of size at most k for some given k) such that (a) this set induces a connected subgraph of the given graph and (b) deleting this set results in a graph which excludes every F ∈ ℱ as a minor. In the area of kernelization, this problem is well known to exclude a polynomial kernel subject to standard complexity hypotheses even in very special cases such as ℱ = K₂, i.e., Connected Vertex Cover. In this work, we give a (2+ε)-approximate polynomial compression for the Connected ℱ-Deletion problem when ℱ contains at least one planar graph. This is the first approximate polynomial compression result for this generic problem. As a corollary, we obtain the first approximate polynomial compression result for the special case of Connected η-Treewidth Deletion.
@InProceedings{ramanujan:LIPIcs.ESA.2021.78, author = {Ramanujan, M. S.}, title = {{On Approximate Compressions for Connected Minor-Hitting Sets}}, booktitle = {29th Annual European Symposium on Algorithms (ESA 2021)}, pages = {78:1--78:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-204-4}, ISSN = {1868-8969}, year = {2021}, volume = {204}, editor = {Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.78}, URN = {urn:nbn:de:0030-drops-146590}, doi = {10.4230/LIPIcs.ESA.2021.78}, annote = {Keywords: Parameterized Complexity, Kernelization, Approximation Algorithms} }
Feedback for Dagstuhl Publishing