LIPIcs.ESA.2023.100.pdf
- Filesize: 0.64 MB
- 13 pages
We show that a canonical labeling of a random n-vertex graph can be obtained by assigning to each vertex x the triple (w₁(x),w₂(x),w₃(x)), where w_k(x) is the number of walks of length k starting from x. This takes time 𝒪(n²), where n² is the input size, by using just two matrix-vector multiplications. The linear-time canonization of a random graph is the classical result of Babai, Erdős, and Selkow. For this purpose they use the well-known combinatorial color refinement procedure, and we make a comparative analysis of the two algorithmic approaches.
Feedback for Dagstuhl Publishing