Dallard, Milanič, and Štorgel [arXiv '22] ask if, for every class excluding a fixed planar graph H as an induced minor, Maximum Independent Set can be solved in polynomial time, and show that this is indeed the case when H is any planar complete bipartite graph, or the 5-vertex clique minus one edge, or minus two disjoint edges. A positive answer would constitute a far-reaching generalization of the state-of-the-art, when we currently do not know if a polynomial-time algorithm exists when H is the 7-vertex path. Relaxing tractability to the existence of a quasipolynomial-time algorithm, we know substantially more. Indeed, quasipolynomial-time algorithms were recently obtained for the t-vertex cycle, C_t [Gartland et al., STOC '21], and the disjoint union of t triangles, tC₃ [Bonamy et al., SODA '23]. We give, for every integer t, a polynomial-time algorithm running in n^O(t⁵) when H is the friendship graph K₁ + tK₂ (t disjoint edges plus a vertex fully adjacent to them), and a quasipolynomial-time algorithm running in n^{O(t² log n) + f(t)}, with f a single-exponential function, when H is tC₃ ⊎ C₄ (the disjoint union of t triangles and a 4-vertex cycle). The former generalizes the algorithm readily obtained from Alekseev’s structural result on graphs excluding tK₂ as an induced subgraph [Alekseev, DAM '07], while the latter extends Bonamy et al.’s result.
@InProceedings{bonnet_et_al:LIPIcs.ESA.2023.23, author = {Bonnet, \'{E}douard and Duron, Julien and Geniet, Colin and Thomass\'{e}, St\'{e}phan and Wesolek, Alexandra}, title = {{Maximum Independent Set When Excluding an Induced Minor: K₁ + tK₂ and tC₃ ⊎ C₄}}, booktitle = {31st Annual European Symposium on Algorithms (ESA 2023)}, pages = {23:1--23:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-295-2}, ISSN = {1868-8969}, year = {2023}, volume = {274}, editor = {G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.23}, URN = {urn:nbn:de:0030-drops-186769}, doi = {10.4230/LIPIcs.ESA.2023.23}, annote = {Keywords: Maximum Independent Set, forbidden induced minors, quasipolynomial-time algorithms} }
Feedback for Dagstuhl Publishing