Document

# Maximum Independent Set When Excluding an Induced Minor: K₁ + tK₂ and tC₃ ⊎ C₄

## File

LIPIcs.ESA.2023.23.pdf
• Filesize: 0.87 MB
• 15 pages

## Acknowledgements

We would like to thank Dibyayan Chakraborty for useful discussions, and anonymous reviewers for their helpful comments, and in particular a nice simplification in the proof of Theorem 2.

## Cite As

Édouard Bonnet, Julien Duron, Colin Geniet, Stéphan Thomassé, and Alexandra Wesolek. Maximum Independent Set When Excluding an Induced Minor: K₁ + tK₂ and tC₃ ⊎ C₄. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.ESA.2023.23

## Abstract

Dallard, Milanič, and Štorgel [arXiv '22] ask if, for every class excluding a fixed planar graph H as an induced minor, Maximum Independent Set can be solved in polynomial time, and show that this is indeed the case when H is any planar complete bipartite graph, or the 5-vertex clique minus one edge, or minus two disjoint edges. A positive answer would constitute a far-reaching generalization of the state-of-the-art, when we currently do not know if a polynomial-time algorithm exists when H is the 7-vertex path. Relaxing tractability to the existence of a quasipolynomial-time algorithm, we know substantially more. Indeed, quasipolynomial-time algorithms were recently obtained for the t-vertex cycle, C_t [Gartland et al., STOC '21], and the disjoint union of t triangles, tC₃ [Bonamy et al., SODA '23]. We give, for every integer t, a polynomial-time algorithm running in n^O(t⁵) when H is the friendship graph K₁ + tK₂ (t disjoint edges plus a vertex fully adjacent to them), and a quasipolynomial-time algorithm running in n^{O(t² log n) + f(t)}, with f a single-exponential function, when H is tC₃ ⊎ C₄ (the disjoint union of t triangles and a 4-vertex cycle). The former generalizes the algorithm readily obtained from Alekseev’s structural result on graphs excluding tK₂ as an induced subgraph [Alekseev, DAM '07], while the latter extends Bonamy et al.’s result.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Graph algorithms analysis
##### Keywords
• Maximum Independent Set
• forbidden induced minors
• quasipolynomial-time algorithms

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. Kuruvilla J. Abraham and Clara Diaz. Identifying large sets of unrelated individuals and unrelated markers. Source code for biology and medicine, 9(1):1-8, 2014.
2. Tara Abrishami, Maria Chudnovsky, Cemil Dibek, and Paweł Rzazewski. Polynomial-time algorithm for maximum independent set in bounded-degree graphs with no long induced claws. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 1448-1470. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.61.
3. Tara Abrishami, Maria Chudnovsky, Marcin Pilipczuk, Paweł Rzążewski, and Paul D. Seymour. Induced subgraphs of bounded treewidth and the container method. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1948-1964. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.116.
4. Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent sets. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages 134-144. PMLR, 2020. URL: http://proceedings.mlr.press/v119/ahn20a.html.
5. Vladimir E. Alekseev. The effect of local constraints on the complexity of determination of the graph independence number. Combinatorial-algebraic methods in applied mathematics, pages 3-13, 1982.
6. Vladimir E. Alekseev. Polynomial algorithm for finding the largest independent sets in graphs without forks. Discrete Applied Mathematics, 135(1-3):3-16, 2004. URL: https://doi.org/10.1016/S0166-218X(02)00290-1.
7. Vladimir E. Alekseev. An upper bound for the number of maximal independent sets in a graph. Discrete Mathematics and Applications, 17(4):355-359, 2007. URL: https://doi.org/doi:10.1515/dma.2007.030.
8. Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic graphs. Theoretical Computer Science, 237(1):123-134, 2000. URL: https://doi.org/10.1016/S0304-3975(98)00158-3.
9. Ismail R. Alkhouri, George K. Atia, and Alvaro Velasquez. A differentiable approach to the maximum independent set problem using dataless neural networks. Neural Networks, 155:168-176, 2022.
10. J. Gary Augustson and Jack Minker. An analysis of some graph theoretical cluster techniques. Journal of the ACM (JACM), 17(4):571-588, 1970.
11. Marthe Bonamy, Édouard Bonnet, Hugues Déprés, Louis Esperet, Colin Geniet, Claire Hilaire, Stéphan Thomassé, and Alexandra Wesolek. Sparse graphs with bounded induced cycle packing number have logarithmic treewidth. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3006-3028. SIAM, 2023.
12. Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Stéphan Thomassé, and Rémi Watrigant. Parameterized complexity of independent set in H-free graphs. In Christophe Paul and Michał Pilipczuk, editors, 13th International Symposium on Parameterized and Exact Computation, IPEC 2018, August 20-24, 2018, Helsinki, Finland, volume 115 of LIPIcs, pages 17:1-17:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.IPEC.2018.17.
13. Édouard Bonnet, Nicolas Bousquet, Stéphan Thomassé, and Rémi Watrigant. When maximum stable set can be solved in FPT time. In Pinyan Lu and Guochuan Zhang, editors, 30th International Symposium on Algorithms and Computation, ISAAC 2019, December 8-11, 2019, Shanghai University of Finance and Economics, Shanghai, China, volume 149 of LIPIcs, pages 49:1-49:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2019.49.
14. Vincent Bouchitté and Ioan Todinca. Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput., 31(1):212-232, 2001. URL: https://doi.org/10.1137/S0097539799359683.
15. Andreas Brandstädt and Raffaele Mosca. Maximum weight independent set for lclaw-free graphs in polynomial time. Discrete Applied Mathematics, 237:57-64, 2018. URL: https://doi.org/10.1016/j.dam.2017.11.029.
16. Sergiy Butenko. Maximum independent set and related problems, with applications. University of Florida, 2003.
17. Sergiy Butenko, Panos M. Pardalos, Ivan Sergienko, Vladimir Shylo, and Petro Stetsyuk. Finding maximum independent sets in graphs arising from coding theory. In Gary B. Lamont, Hisham Haddad, George A. Papadopoulos, and Brajendra Panda, editors, Proceedings of the 2002 ACM Symposium on Applied Computing (SAC), March 10-14, 2002, Madrid, Spain, pages 542-546. ACM, 2002. URL: https://doi.org/10.1145/508791.508897.
18. Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022, pages 612-623. IEEE, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00064.
19. Maria Chudnovsky, Marcin Pilipczuk, Michał Pilipczuk, and Stéphan Thomassé. On the maximum weight independent set problem in graphs without induced cycles of length at least five. SIAM J. Discret. Math., 34(2):1472-1483, 2020. URL: https://doi.org/10.1137/19M1249473.
20. Maria Chudnovsky, Marcin Pilipczuk, Michał Pilipczuk, and Stéphan Thomassé. Quasi-polynomial time approximation schemes for the maximum weight independent set problem in H-free graphs. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2260-2278, 2020. URL: https://doi.org/10.1137/1.9781611975994.139.
21. Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput., 85(1):12-75, 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.
22. Konrad K. Dabrowski, Vadim V. Lozin, Haiko Müller, and Dieter Rautenbach. Parameterized complexity of the weighted independent set problem beyond graphs of bounded clique number. J. Discrete Algorithms, 14:207-213, 2012. URL: https://doi.org/10.1016/j.jda.2011.12.012.
23. Clément Dallard, Martin Milanič, and Kenny Štorgel. Treewidth versus clique number. III. tree-independence number of graphs with a forbidden structure. CoRR, abs/2206.15092, 2022. URL: https://doi.org/10.48550/arXiv.2206.15092.
24. Clément Dallard, Martin Milanič, and Kenny Štorgel. Treewidth versus clique number. II. tree-independence number, 2021. URL: https://doi.org/10.48550/arXiv.2111.04543.
25. Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci., 141(1&2):109-131, 1995. URL: https://doi.org/10.1016/0304-3975(94)00097-3.
26. Duncan Eddy and Mykel J. Kochenderfer. A maximum independent set method for scheduling earth-observing satellite constellations. Journal of Spacecraft and Rockets, 58(5):1416-1429, 2021.
27. Elaine Forsyth and Leo Katz. A matrix approach to the analysis of sociometric data: preliminary report. Sociometry, 9(4):340-347, 1946.
28. Eleanor J. Gardiner, Peter Willett, and Peter J. Artymiuk. Graph-theoretic techniques for macromolecular docking. J. Chem. Inf. Comput. Sci., 40(2):273-279, 2000. URL: https://doi.org/10.1021/ci990262o.
29. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
30. Michael R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-complete graph problems. Theor. Comput. Sci., 1(3):237-267, 1976. URL: https://doi.org/10.1016/0304-3975(76)90059-1.
31. Peter Gartland and Daniel Lokshtanov. Independent set on P_k-free graphs in quasi-polynomial time. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 613-624. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00063.
32. Peter Gartland, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Paweł Rzążewski. Finding large induced sparse subgraphs in C_greatert -free graphs in quasipolynomial time. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 330-341. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451034.
33. Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combinatorial Theory, Series B, 16(1):47-56, 1974.
34. Andrzej Grzesik, Tereza Klimosová, Marcin Pilipczuk, and Michał Pilipczuk. Polynomial-time algorithm for maximum weight independent set on P_6-free graphs. ACM Trans. Algorithms, 18(1):4:1-4:57, 2022. URL: https://doi.org/10.1145/3414473.
35. Johan Håstad. Clique is hard to approximate within n^1-ε. In Acta Mathematica, pages 627-636, 1996.
36. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367-375, 2001. URL: https://doi.org/10.1006/jcss.2000.1727.
37. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512-530, 2001. URL: https://doi.org/10.1006/jcss.2001.1774.
38. Denés Kőnig. Gráfok és mátrixok. Matematikai és Fizikai Lapok, 38:116-119, 1931.
39. Tuukka Korhonen. Grid induced minor theorem for graphs of small degree. J. Comb. Theory, Ser. B, 160:206-214, 2023. URL: https://doi.org/10.1016/j.jctb.2023.01.002.
40. Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck. Finding near-optimal independent sets at scale. J. Heuristics, 23(4):207-229, 2017. URL: https://doi.org/10.1007/s10732-017-9337-x.
41. Vadim V. Lozin and Martin Milanič. A polynomial algorithm to find an independent set of maximum weight in a fork-free graph. J. Discrete Algorithms, 6(4):595-604, 2008. URL: https://doi.org/10.1016/j.jda.2008.04.001.
42. Marcin Pilipczuk, Michał Pilipczuk, and Paweł Rzążewski. Quasi-polynomial-time algorithm for independent set in P_t-free graphs via shrinking the space of induced paths. In Hung Viet Le and Valerie King, editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference, January 11-12, 2021, pages 204-209. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976496.23.
43. Svatopluk Poljak. A note on stable sets and colorings of graphs. Commentationes Mathematicae Universitatis Carolinae, 15(2):307-309, 1974.
44. Thomas Pontoizeau, Florian Sikora, Florian Yger, and Tristan Cazenave. Neural maximum independent set. In Machine Learning and Principles and Practice of Knowledge Discovery in Databases - International Workshops of ECML PKDD 2021, Virtual Event, September 13-17, 2021, Proceedings, Part I, volume 1524 of Communications in Computer and Information Science, pages 223-237. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-93736-2_18.
45. Neil Robertson and Paul D. Seymour. Graph minors. V. Excluding a planar graph. J. Comb. Theory, Ser. B, 41(1):92-114, 1986. URL: https://doi.org/10.1016/0095-8956(86)90030-4.
46. Donald J. Rose, Robert E. Tarjan, and George S. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput., 5(2):266-283, 1976. URL: https://doi.org/10.1137/0205021.
47. Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A new algorithm for generating all the maximal independent sets. SIAM J. Comput., 6(3):505-517, 1977. URL: https://doi.org/10.1137/0206036.
48. Bram Verweij and Karen Aardal. An optimisation algorithm for maximum independent set with applications in map labelling. In Jaroslav Nesetril, editor, Algorithms - ESA '99, 7th Annual European Symposium, Prague, Czech Republic, July 16-18, 1999, Proceedings, volume 1643 of Lecture Notes in Computer Science, pages 426-437. Springer, 1999. URL: https://doi.org/10.1007/3-540-48481-7_37.
49. Mingyu Xiao and Hiroshi Nagamochi. Exact algorithms for maximum independent set. Inf. Comput., 255:126-146, 2017. URL: https://doi.org/10.1016/j.ic.2017.06.001.
50. David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing, 3(1):103-128, 2007. URL: https://doi.org/10.4086/toc.2007.v003a006.
X

Feedback for Dagstuhl Publishing