Bootstrapping Dynamic Distance Oracles

Authors Sebastian Forster , Gramoz Goranci , Yasamin Nazari , Antonis Skarlatos



PDF
Thumbnail PDF

File

LIPIcs.ESA.2023.50.pdf
  • Filesize: 0.79 MB
  • 16 pages

Document Identifiers

Author Details

Sebastian Forster
  • Department of Computer Science, University of Salzburg, Austria
Gramoz Goranci
  • Faculty of Computer Science, University of Vienna, Austria
Yasamin Nazari
  • Department of Computer Science, VU Amsterdam, The Netherlands
Antonis Skarlatos
  • Department of Computer Science, University of Salzburg, Austria

Cite AsGet BibTex

Sebastian Forster, Gramoz Goranci, Yasamin Nazari, and Antonis Skarlatos. Bootstrapping Dynamic Distance Oracles. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 50:1-50:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.ESA.2023.50

Abstract

Designing approximate all-pairs distance oracles in the fully dynamic setting is one of the central problems in dynamic graph algorithms. Despite extensive research on this topic, the first result breaking the O(√n) barrier on the update time for any non-trivial approximation was introduced only recently by Forster, Goranci and Henzinger [SODA'21] who achieved m^{1/ρ+o(1)} amortized update time with a O(log n)^{3ρ-2} factor in the approximation ratio, for any parameter ρ ≥ 1. In this paper, we give the first constant-stretch fully dynamic distance oracle with small polynomial update and query time. Prior work required either at least a poly-logarithmic approximation or much larger update time. Our result gives a more fine-grained trade-off between stretch and update time, for instance we can achieve constant stretch of O(1/(ρ²))^{4/ρ} in amortized update time Õ(n^{ρ}), and query time Õ(n^{ρ/8}) for any constant parameter 0 < ρ < 1. Our algorithm is randomized and assumes an oblivious adversary. A core technical idea underlying our construction is to design a black-box reduction from decremental approximate hub-labeling schemes to fully dynamic distance oracles, which may be of independent interest. We then apply this reduction repeatedly to an existing decremental algorithm to bootstrap our fully dynamic solution.

Subject Classification

ACM Subject Classification
  • Theory of computation → Dynamic graph algorithms
Keywords
  • Dynamic graph algorithms
  • Distance Oracles
  • Shortest Paths

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Amir Abboud, Karl Bringmann, and Nick Fischer. Stronger 3-sum lower bounds for approximate distance oracles via additive combinatorics. CoRR, abs/2211.07058, 2022. Google Scholar
  2. Amir Abboud, Karl Bringmann, Seri Khoury, and Or Zamir. Hardness of approximation in P via short cycle removal: cycle detection, distance oracles, and beyond. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2022), pages 1487-1500, 2022. URL: https://doi.org/10.1145/3519935.3520066.
  3. Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for dynamic problems. In Proceedings of the 55th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2014), pages 434-443, 2014. URL: https://doi.org/10.1109/FOCS.2014.53.
  4. Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. Fully dynamic all-pairs shortest paths with worst-case update-time revisited. In Proc. of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pages 440-452, 2017. URL: https://doi.org/10.1137/1.9781611974782.28.
  5. Ittai Abraham, Shiri Chechik, and Kunal Talwar. Fully dynamic all-pairs shortest paths: Breaking the o(n) barrier. In Proceedings of the 17th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2014) and the 18th International Workshop on Randomization and Computation (APPROX/RANDOM 2014), pages 1-16, 2014. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.1.
  6. Ittai Abraham, Daniel Delling, Andrew V Goldberg, and Renato F Werneck. Hierarchical hub labelings for shortest paths. In Algorithms-ESA 2012: 20th Annual European Symposium, Ljubljana, Slovenia, September 10-12, 2012. Proceedings 20, pages 24-35. Springer, 2012. Google Scholar
  7. Surender Baswana, Sumeet Khurana, and Soumojit Sarkar. Fully dynamic randomized algorithms for graph spanners. ACM Transactions on Algorithms, 8(4):35:1-35:51, 2012. URL: https://doi.org/10.1145/2344422.2344425.
  8. Ruben Becker, Sebastian Forster, Andreas Karrenbauer, and Christoph Lenzen. Near-optimal approximate shortest paths and transshipment in distributed and streaming models. arXiv preprint arXiv:1607.05127, 2016. Google Scholar
  9. Aaron Bernstein. Fully dynamic (2 + ε) approximate all-pairs shortest paths with fast query and close to linear update time. In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pages 693-702. IEEE Computer Society, 2009. URL: https://doi.org/10.1109/FOCS.2009.16.
  10. Aaron Bernstein. Maintaining shortest paths under deletions in weighted directed graphs. SIAM Journal on Computing, 45(2):548-574, 2016. Announced at STOC 2013. URL: https://doi.org/10.1137/130938670.
  11. Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic decremental SSSP and approximate min-cost flow in almost-linear time. In Proceedings of the 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS 2021), pages 1000-1008, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00100.
  12. Aaron Bernstein, Maximilian Probst, and Christian Wulff-Nilsen. Decremental strongly-connected components and single-source reachability in near-linear time. In Proc. of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC 2019), pages 365-376, 2019. URL: https://doi.org/10.1145/3313276.3316335.
  13. Jan Van Den Brand, Sebastian Forster, and Yasamin Nazari. Fast deterministic fully dynamic distance approximation. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 1011-1022, 2022. URL: https://doi.org/10.1109/FOCS54457.2022.00099.
  14. Jan van den Brand and Danupon Nanongkai. Dynamic approximate shortest paths and beyond: Subquadratic and worst-case update time. In FOCS, pages 436-455. IEEE Computer Society, 2019. Google Scholar
  15. Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic matrix inverse: Improved algorithms and matching conditional lower bounds. In FOCS, pages 456-480. IEEE Computer Society, 2019. Google Scholar
  16. Shiri Chechik. Near-optimal approximate decremental all pairs shortest paths. In Mikkel Thorup, editor, Proceedings of the 59th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2018), pages 170-181, 2018. URL: https://doi.org/10.1109/FOCS.2018.00025.
  17. Shiri Chechik and Tianyi Zhang. Faster deterministic worst-case fully dynamic all-pairs shortest paths via decremental hop-restricted shortest paths. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 87-99. SIAM, 2023. Google Scholar
  18. Li Chen, Gramoz Goranci, Monika Henzinger, Richard Peng, and Thatchaphol Saranurak. Fast dynamic cuts, distances and effective resistances via vertex sparsifiers. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1135-1146. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00109.
  19. Julia Chuzhoy. Decremental all-pairs shortest paths in deterministic near-linear time. In Samir Khuller and Virginia Vassilevska Williams, editors, Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC 2021), pages 626-639. ACM, 2021. URL: https://doi.org/10.1145/3406325.3451025.
  20. Julia Chuzhoy and Ruimin Zhang. A new deterministic algorithm for fully dynamic all-pairs shortest paths. In Proceedings of the 55th ACM Annual Symposium on Theory of Computing (STOC 2023), 2023. URL: https://arxiv.org/abs/2304.09321.
  21. Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance queries via 2-hop labels. SIAM Journal on Computing, 32(5):1338-1355, 2003. Google Scholar
  22. Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest paths. Journal of the ACM, 51(6):968-992, 2004. Announced at STOC 2003. URL: https://doi.org/10.1145/1039488.1039492.
  23. Camil Demetrescu and Giuseppe F. Italiano. Fully dynamic all pairs shortest paths with real edge weights. Journal of Computer and System Sciences, 72(5):813-837, 2006. Announced at FOCS 2001. URL: https://doi.org/10.1016/j.jcss.2005.05.005.
  24. Michal Dory, Sebastian Forster, Yasamin Nazari, and Tijn de Vos. New tradeoffs for decremental approximate all-pairs shortest paths. arXiv preprint arXiv:2211.01152, 2022. Google Scholar
  25. Sebastian Forster, Gramoz Goranci, and Monika Henzinger. Dynamic maintenance of low-stretch probabilistic tree embeddings with applications. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, (SODA 2021), pages 1226-1245, 2021. URL: https://doi.org/10.1137/1.9781611976465.75.
  26. Sebastian Forster, Gramoz Goranci, Yasamin Nazari, and Antonis Skarlatos. Bootstrapping dynamic distance oracles, 2023. URL: https://arxiv.org/abs/2303.06102.
  27. Sebastian Forster, Yasamin Nazari, and Maximilian Probst Gutenberg. Deterministic incremental APSP with polylogarithmic update time and stretch. CoRR, abs/2211.04217, 2022. URL: https://doi.org/10.48550/arXiv.2211.04217.
  28. Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Fully-dynamic all-pairs shortest paths: Improved worst-case time and space bounds. In Proc. of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2562-2574, 2020. URL: https://doi.org/10.1137/1.9781611975994.156.
  29. Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A subquadratic-time algorithm for decremental single-source shortest paths. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1053-1072. SIAM, 2014. Google Scholar
  30. Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Dynamic approximate all-pairs shortest paths: Breaking the o(mn) barrier and derandomization. SIAM J. Comput., 45(3):947-1006, 2016. Announced at FOCS 2013. URL: https://doi.org/10.1137/140957299.
  31. Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental single-source shortest paths on undirected graphs in near-linear total update time. Journal of the ACM, 65(6):36:1-36:40, 2018. Announced at FOCS 2014. URL: https://doi.org/10.1145/3218657.
  32. Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing (STOC 2015), pages 21-30, 2015. URL: https://doi.org/10.1145/2746539.2746609.
  33. Monika Rauch Henzinger and Valerie King. Fully dynamic biconnectivity and transitive closure. In Proceedings of IEEE 36th Annual Foundations of Computer Science, pages 664-672. IEEE, 1995. Google Scholar
  34. Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In Proc. of the 40th Annual Symposium on Foundations of Computer Science (FOCS), pages 81-91, 1999. URL: https://doi.org/10.1109/SFFCS.1999.814580.
  35. Jakub Łącki and Yasamin Nazari. Near-Optimal Decremental Hopsets with Applications. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Google Scholar
  36. Aleksander Mądry. Faster approximation schemes for fractional multicommodity flow problems via dynamic graph algorithms. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC 2010), pages 121-130, 2010. URL: https://doi.org/10.1145/1806689.1806708.
  37. Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Proceedings of the 42nd ACM Symposium on Theory of Computing, (STOC 2010), pages 603-610, 2010. URL: https://doi.org/10.1145/1806689.1806772.
  38. Liam Roditty and Uri Zwick. Improved dynamic reachability algorithms for directed graphs. SIAM Journal on Computing, 37(5):1455-1471, 2008. Announced at FOCS 2002. URL: https://doi.org/10.1137/060650271.
  39. Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389-401, 2011. Announced at ESA 2004. URL: https://doi.org/10.1007/s00453-010-9401-5.
  40. Liam Roditty and Uri Zwick. Dynamic approximate all-pairs shortest paths in undirected graphs. SIAM J. Comput., 41(3):670-683, 2012. Announced at FOCS 2004. URL: https://doi.org/10.1137/090776573.
  41. Piotr Sankowski. Subquadratic algorithm for dynamic shortest distances. In COCOON, volume 3595 of Lecture Notes in Computer Science, pages 461-470. Springer, 2005. Google Scholar
  42. Mikkel Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles. In Proceedings of the 9th Scandinavian Workshop on Algorithm Theory (SWAT 2004), pages 384-396, 2004. URL: https://doi.org/10.1007/978-3-540-27810-8_33.
  43. Mikkel Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. In Proc. of the 37th Annual ACM Symposium on Theory of Computing (STOC 2005), pages 112-119, 2005. URL: https://doi.org/10.1145/1060590.1060607.
  44. Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM (JACM), 52(1):1-24, 2005. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail