Document

# Structural Parameterizations for Two Bounded Degree Problems Revisited

## File

LIPIcs.ESA.2023.77.pdf
• Filesize: 0.79 MB
• 16 pages

## Cite As

Michael Lampis and Manolis Vasilakis. Structural Parameterizations for Two Bounded Degree Problems Revisited. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 77:1-77:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.ESA.2023.77

## Abstract

We revisit two well-studied problems, Bounded Degree Vertex Deletion and Defective Coloring, where the input is a graph G and a target degree Δ and we are asked either to edit or partition the graph so that the maximum degree becomes bounded by Δ. Both problems are known to be parameterized intractable for the most well-known structural parameters, such as treewidth. We revisit the parameterization by treewidth, as well as several related parameters and present a more fine-grained picture of the complexity of both problems. In particular: - Both problems admit straightforward DP algorithms with table sizes (Δ+2)^tw and (χ_d(Δ+1))^{tw} respectively, where tw is the input graph’s treewidth and χ_d the number of available colors. We show that, under the SETH, both algorithms are essentially optimal, for any non-trivial fixed values of Δ, χ_d, even if we replace treewidth by pathwidth. Along the way, we obtain an algorithm for Defective Coloring with complexity quasi-linear in the table size, thus settling the complexity of both problems for treewidth and pathwidth. - Given that the standard DP algorithm is optimal for treewidth and pathwidth, we then go on to consider the more restricted parameter tree-depth. Here, previously known lower bounds imply that, under the ETH, Bounded Vertex Degree Deletion and Defective Coloring cannot be solved in time n^o(∜{td}) and n^o(√{td}) respectively, leaving some hope that a qualitatively faster algorithm than the one for treewidth may be possible. We close this gap by showing that neither problem can be solved in time n^o(td), under the ETH, by employing a recursive low tree-depth construction that may be of independent interest. - Finally, we consider a structural parameter that is known to be restrictive enough to render both problems FPT: vertex cover. For both problems the best known algorithm in this setting has a super-exponential dependence of the form vc^𝒪(vc). We show that this is optimal, as an algorithm with dependence of the form vc^o(vc) would violate the ETH. Our proof relies on a new application of the technique of d-detecting families introduced by Bonamy et al. [ToCT 2019]. Our results, although mostly negative in nature, paint a clear picture regarding the complexity of both problems in the landscape of parameterized complexity, since in all cases we provide essentially matching upper and lower bounds.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Parameterized complexity and exact algorithms
##### Keywords
• ETH
• Parameterized Complexity
• SETH

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. James A. Andrews and Michael S. Jacobson. On a generalization of chromatic number. Congressus Numerantium, 47:33-48, 1985.
2. Patrizio Angelini, Michael A. Bekos, Felice De Luca, Walter Didimo, Michael Kaufmann, Stephen G. Kobourov, Fabrizio Montecchiani, Chrysanthi N. Raftopoulou, Vincenzo Roselli, and Antonios Symvonis. Vertex-coloring with defects. J. Graph Algorithms Appl., 21(3):313-340, 2017. URL: https://doi.org/10.7155/jgaa.00418.
3. Dan Archdeacon. A note on defective colorings of graphs in surfaces. J. Graph Theory, 11(4):517-519, 1987. URL: https://doi.org/10.1002/jgt.3190110408.
4. Balabhaskar Balasundaram, Sergiy Butenko, and Illya V. Hicks. Clique relaxations in social network analysis: The maximum k-plex problem. Oper. Res., 59(1):133-142, 2011. URL: https://doi.org/10.1287/opre.1100.0851.
5. Rémy Belmonte, Michael Lampis, and Valia Mitsou. Parameterized (approximate) defective coloring. SIAM J. Discret. Math., 34(2):1084-1106, 2020. URL: https://doi.org/10.1137/18M1223666.
6. Rémy Belmonte, Michael Lampis, and Valia Mitsou. Defective coloring on classes of perfect graphs. Discret. Math. Theor. Comput. Sci., 24, 2022. URL: https://doi.org/10.46298/dmtcs.4926.
7. Nadja Betzler, Hans L. Bodlaender, Robert Bredereck, Rolf Niedermeier, and Johannes Uhlmann. On making a distinguished vertex of minimum degree by vertex deletion. Algorithmica, 68(3):715-738, 2014. URL: https://doi.org/10.1007/s00453-012-9695-6.
8. Nadja Betzler, Robert Bredereck, Rolf Niedermeier, and Johannes Uhlmann. On bounded-degree vertex deletion parameterized by treewidth. Discret. Appl. Math., 160(1-2):53-60, 2012. URL: https://doi.org/10.1016/j.dam.2011.08.013.
9. Nadja Betzler and Johannes Uhlmann. Parameterized complexity of candidate control in elections and related digraph problems. Theor. Comput. Sci., 410(52):5425-5442, 2009. URL: https://doi.org/10.1016/j.tcs.2009.05.029.
10. Marthe Bonamy, Lukasz Kowalik, Michal Pilipczuk, Arkadiusz Socala, and Marcin Wrochna. Tight lower bounds for the complexity of multicoloring. ACM Trans. Comput. Theory, 11(3):13:1-13:19, 2019. URL: https://doi.org/10.1145/3313906.
11. Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over tree decompositions. In 11th International Symposium on Parameterized and Exact Computation, IPEC 2016, volume 63 of LIPIcs, pages 8:1-8:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.IPEC.2016.8.
12. Ilkyoo Choi and Louis Esperet. Improper coloring of graphs on surfaces. J. Graph Theory, 91(1):16-34, 2019. URL: https://doi.org/10.1002/jgt.22418.
13. Lenore J. Cowen, Robert Cowen, and Douglas R. Woodall. Defective colorings of graphs in surfaces: Partitions into subgraphs of bounded valency. J. Graph Theory, 10(2):187-195, 1986. URL: https://doi.org/10.1002/jgt.3190100207.
14. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
15. Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of perfect matchings. J. ACM, 65(3):12:1-12:46, 2018. URL: https://doi.org/10.1145/3148227.
16. Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential time. ACM Trans. Algorithms, 18(2):17:1-17:31, 2022. URL: https://doi.org/10.1145/3506707.
17. Marek Cygan and Marcin Pilipczuk. Exact and approximate bandwidth. Theor. Comput. Sci., 411(40-42):3701-3713, 2010. URL: https://doi.org/10.1016/j.tcs.2010.06.018.
18. Reinhard Diestel. Graph Theory, volume 173 of Graduate texts in mathematics. Springer, 2017. URL: https://doi.org/10.1007/978-3-662-53622-3.
19. Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. New algorithms for mixed dominating set. Discret. Math. Theor. Comput. Sci., 23(1), 2021. URL: https://doi.org/10.46298/dmtcs.6824.
20. Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. Upper dominating set: Tight algorithms for pathwidth and sub-exponential approximation. Theor. Comput. Sci., 923:271-291, 2022. URL: https://doi.org/10.1016/j.tcs.2022.05.013.
21. Michael R. Fellows, Jiong Guo, Hannes Moser, and Rolf Niedermeier. A generalization of nemhauser and trotter’s local optimization theorem. J. Comput. Syst. Sci., 77(6):1141-1158, 2011. URL: https://doi.org/10.1016/j.jcss.2010.12.001.
22. Jacob Focke, Dániel Marx, Fionn Mc Inerney, Daniel Neuen, Govind S. Sankar, Philipp Schepper, and Philip Wellnitz. Tight complexity bounds for counting generalized dominating sets in bounded-treewidth graphs. In Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, pages 3664-3683. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch140.
23. Jacob Focke, Dániel Marx, and Pawel Rzazewski. Counting list homomorphisms from graphs of bounded treewidth: tight complexity bounds. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, pages 431-458. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.22.
24. Toshihiro Fujito. A unified approximation algorithm for node-deletion problems. Discret. Appl. Math., 86(2-3):213-231, 1998. URL: https://doi.org/10.1016/S0166-218X(98)00035-3.
25. Toshihiro Fujito. Approximating bounded degree deletion via matroid matching. In Algorithms and Complexity - 10th International Conference, CIAC 2017, volume 10236 of Lecture Notes in Computer Science, pages 234-246, 2017. URL: https://doi.org/10.1007/978-3-319-57586-5_20.
26. Robert Ganian, Thekla Hamm, Viktoriia Korchemna, Karolina Okrasa, and Kirill Simonov. The fine-grained complexity of graph homomorphism parameterized by clique-width. In 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, volume 229 of LIPIcs, pages 66:1-66:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ICALP.2022.66.
27. Robert Ganian, Fabian Klute, and Sebastian Ordyniak. On structural parameterizations of the bounded-degree vertex deletion problem. Algorithmica, 83(1):297-336, 2021. URL: https://doi.org/10.1007/s00453-020-00758-8.
28. Carla Groenland, Isja Mannens, Jesper Nederlof, and Krisztina Szilágyi. Tight bounds for counting colorings and connected edge sets parameterized by cutwidth. In 39th International Symposium on Theoretical Aspects of Computer Science, STACS 2022, volume 219 of LIPIcs, pages 36:1-36:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.STACS.2022.36.
29. Tesshu Hanaka, Ioannis Katsikarelis, Michael Lampis, Yota Otachi, and Florian Sikora. Parameterized orientable deletion. Algorithmica, 82(7):1909-1938, 2020. URL: https://doi.org/10.1007/s00453-020-00679-6.
30. Frédéric Havet, Ross J. Kang, and Jean-Sébastien Sereni. Improper coloring of unit disk graphs. Networks, 54(3):150-164, 2009. URL: https://doi.org/10.1002/net.20318.
31. Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of graph coloring problems. Discret. Appl. Math., 327:33-46, 2023. URL: https://doi.org/10.1016/j.dam.2022.11.011.
32. Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structural parameters, tight bounds, and approximation for (k, r)-center. Discret. Appl. Math., 264:90-117, 2019. URL: https://doi.org/10.1016/j.dam.2018.11.002.
33. Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structurally parameterized d-scattered set. Discret. Appl. Math., 308:168-186, 2022. URL: https://doi.org/10.1016/j.dam.2020.03.052.
34. Michael Lampis. Parameterized approximation schemes using graph widths. In Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014, volume 8572 of Lecture Notes in Computer Science, pages 775-786. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-43948-7_64.
35. Michael Lampis. Finer tight bounds for coloring on clique-width. SIAM J. Discret. Math., 34(3):1538-1558, 2020. URL: https://doi.org/10.1137/19M1280326.
36. Bernt Lindström. On a combinatorial problem in number theory. Canadian Mathematical Bulletin, 8(4):477-490, 1965. URL: https://doi.org/10.4153/CMB-1965-034-2.
37. Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1-13:30, 2018. URL: https://doi.org/10.1145/3170442.
38. Daniel Lokshtanov, Pranabendu Misra, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Fpt-approximation for FPT problems. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pages 199-218. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.14.
39. Benjamin McClosky and Illya V. Hicks. Combinatorial algorithms for the maximum k-plex problem. J. Comb. Optim., 23(1):29-49, 2012. URL: https://doi.org/10.1007/s10878-010-9338-2.
40. Hannes Moser, Rolf Niedermeier, and Manuel Sorge. Exact combinatorial algorithms and experiments for finding maximum k-plexes. J. Comb. Optim., 24(3):347-373, 2012. URL: https://doi.org/10.1007/s10878-011-9391-5.
41. Naomi Nishimura, Prabhakar Ragde, and Dimitrios M. Thilikos. Fast fixed-parameter tractable algorithms for nontrivial generalizations of vertex cover. Discret. Appl. Math., 152(1-3):229-245, 2005. URL: https://doi.org/10.1016/j.dam.2005.02.029.
42. Karolina Okrasa and Pawel Rzazewski. Fine-grained complexity of the graph homomorphism problem for bounded-treewidth graphs. SIAM J. Comput., 50(2):487-508, 2021. URL: https://doi.org/10.1137/20M1320146.
43. Michael Okun and Amnon Barak. A new approach for approximating node deletion problems. Inf. Process. Lett., 88(5):231-236, 2003. URL: https://doi.org/10.1016/j.ipl.2003.08.005.
44. Venkatesh Raman, Saket Saurabh, and Sriganesh Srihari. Parameterized algorithms for generalized domination. In Combinatorial Optimization and Applications, Second International Conference, COCOA 2008, volume 5165 of Lecture Notes in Computer Science, pages 116-126. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-85097-7_11.
45. Atsushi Takahashi, Shuichi Ueno, and Yoji Kajitani. Mixed searching and proper-path-width. Theor. Comput. Sci., 137(2):253-268, 1995.
46. Craig A. Tovey. A simplified np-complete satisfiability problem. Discret. Appl. Math., 8(1):85-89, 1984. URL: https://doi.org/10.1016/0166-218X(84)90081-7.
47. Bas A. M. van Geffen, Bart M. P. Jansen, Arnoud A. W. M. de Kroon, and Rolf Morel. Lower bounds for dynamic programming on planar graphs of bounded cutwidth. J. Graph Algorithms Appl., 24(3):461-482, 2020. URL: https://doi.org/10.7155/jgaa.00542.
48. Johan M. M. van Rooij. A generic convolution algorithm for join operations on tree decompositions. In Computer Science - Theory and Applications - 16th International Computer Science Symposium in Russia, CSR 2021, volume 12730 of Lecture Notes in Computer Science, pages 435-459. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-79416-3_27.
49. Mingyu Xiao. A parameterized algorithm for bounded-degree vertex deletion. In Computing and Combinatorics - 22nd International Conference, COCOON 2016, volume 9797 of Lecture Notes in Computer Science, pages 79-91. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-42634-1_7.
50. Mingyu Xiao. On a generalization of nemhauser and trotter’s local optimization theorem. J. Comput. Syst. Sci., 84:97-106, 2017. URL: https://doi.org/10.1016/j.jcss.2016.08.003.
X

Feedback for Dagstuhl Publishing