Lower Envelopes of Surface Patches in 3-Space

Authors Pankaj K. Agarwal , Esther Ezra , Micha Sharir



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.6.pdf
  • Filesize: 0.68 MB
  • 17 pages

Document Identifiers

Author Details

Pankaj K. Agarwal
  • Department of Computer Science, Duke University, Durham, NC, USA
Esther Ezra
  • Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel
Micha Sharir
  • School of Computer Science, Tel Aviv University, Tel Aviv, Israel

Cite AsGet BibTex

Pankaj K. Agarwal, Esther Ezra, and Micha Sharir. Lower Envelopes of Surface Patches in 3-Space. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ESA.2024.6

Abstract

Let Σ be a collection of n surface patches, each being the graph of a partially defined semi-algebraic function of constant description complexity, and assume that any triple of them intersect in at most s = 2 points. We show that the complexity of the lower envelope of the surfaces in Σ is O(n² log^{6+ε} n), for any ε > 0. This almost settles a long-standing open problem posed by Halperin and Sharir, thirty years ago, who showed the nearly-optimal albeit weaker bound of O(n²⋅ 2^{c√{log n}}) on the complexity of the lower envelope, where c > 0 is some constant. Our approach is fairly simple and is based on hierarchical cuttings and gradations, as well as a simple charging scheme. We extend our analysis to the case s > 2, under a "favorable cross section" assumption, in which case we show that the bound on the complexity of the lower envelope is O(n² log^{11+ε} n), for any ε > 0. Incorporating these bounds with the randomized incremental construction algorithms of Boissonnat and Dobrindt, we obtain efficient constructions of lower envelopes of surface patches with the above properties, whose overall expected running time is O(n² polylog), as well as efficient data structures that support point location queries in their minimization diagrams in O(log²n) expected time.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Hierarchical cuttings
  • surface patches in 3-space
  • lower envelopes
  • charging scheme
  • gradation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. P. Afshani and K. Tsakalidis,Optimal deterministic shallow cuttings for 3-d dominance ranges.Algorithmica, 80(11): 3192-3206 (2018). Google Scholar
  2. P. Afshani, T. M. Chan, K. Tsakalidis,Deterministic rectangle enclosure and offline dominance reporting on the RAM.In Proc. Forty-First International Colloq. Automata, Languages Programming, 8572(77-88), (2014). Google Scholar
  3. P. K. Agarwal, B. Aronov, E. Ezra, and J. Zahl. An efficient algorithm for generalized polynomial partitioning andits applications. SIAM J. Comput., 50:760-787, (2021). Google Scholar
  4. P. K. Agarwal, B. Aronov, and M. Sharir,Computing envelopes in four dimensions with applications.SIAM J. Comput. 26(6): 1714-1732 (1997). Google Scholar
  5. P. K. Agarwal, A. Efrat, and M. Sharir,Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications.SIAM J. Comput. 29(3): 912-953 (1999). Google Scholar
  6. P. K. Agarwal, B. Aronov, and M. Sharir, On the complexity of many faces in arrangements of pseudo-segments and of circles, in Discrete and Computational Geometry: The Goodman-Pollack Festschrift(B. Aronov, S. Basu, J. Pach, and M. Sharir, eds.), Springer Verlag, Berlin, pp. 1-24, (2003). Google Scholar
  7. P. K. Agarwal, J. Erickson, and L. J. Guibas,Kinetic binary space partitions for intersecting segments and disjoint triangles,in Proc. 9th Annual ACM-SIAM Sympos. Discrete Algorithms, pp. 107-116, (1998). Google Scholar
  8. P. K. Agarwal, J. Matoušek, and O. Schwarzkopf,Computing many faces in arrangements of lines and segments.SIAM J. Comput. 27(2): 491-505 (1998). Google Scholar
  9. P. Agarwal and M. Sharir,Efficient randomized algorithms for some geometric optimization problems.Discrete Comput. Geom., 16:317-337 (1996). Google Scholar
  10. P. K. Agarwal and M. Sharir,Arrangements and their applications,In Handbook of Computational Geometry,(J. Sack and J. Urrutia, eds.), Elsevier, Amsterdam, pages 973-1027, 2000. Google Scholar
  11. P. K. Agarwal and M. Sharir,Pseudoline arrangements: Duality, algorithms and applications,SIAM J. Comput. 34:526-552, (2005). Google Scholar
  12. G. Alexandron, H. Kaplan, and M. Sharir,Kinetic and dynamic data structures for convex hulls and upper envelopes.Comput. Geom., 36(2):144-158 (2007). Google Scholar
  13. N. Alon, and J. H. Spencer,The Probabilistic Method, Third Edition.Wiley-Interscience series in discrete mathematics and optimization, Wiley 2008. Google Scholar
  14. M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications, 3rd Ed., SpringerVerlag, Berlin-Heidelberg, 2008. Google Scholar
  15. M. de Berg, and O. Schwarzkopf,Cuttings and applications.Int. J. Comput. Geom. Appl., 5(4):343-355 (1995). Google Scholar
  16. J. D. Boissonnat and K. Dobrindt,On-line construction of the upper evelope of triangles and surface patches in three dimensions,Comput. Geom. 5:303-320 (1995) Google Scholar
  17. Timothy M. Chan and Konstantinos Tsakalidis,Optimal deterministic algorithms for 2-d and 3-d shallow cuttings.Discrete Comput. Geom., 56(4): 866-881 (2016). Google Scholar
  18. B. Chazelle,Cutting hyperplanes for divide-and-conquer.Discrete Comput. Geom., 9(1), 145–158 (1993). Google Scholar
  19. B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir,A singly exponential stratification scheme for real semi-algebraic varieties and its applications,Theoret. Comput. Sci. 84:77-105, (1991).Also in Proc. 16th Int. Colloq. on Automata, Languages and Programming, 179-193, 1989. Google Scholar
  20. B. Chazelle and J. Friedman, A deterministic view of random sampling and its use in geometry, Combinatorica 10:229-249 (1990). Google Scholar
  21. K. L. Clarkson, New applications of random sampling in computational geometry, Discrete Comput. Geom., 2:195-222 (1987). Google Scholar
  22. K. L. Clarkson and P. W. Shor, Applications of random sampling in computational geometry, II, Discrete Comput. Geom., 4:387-421 (1989). Google Scholar
  23. L. J. Guibas, Kinetic data structures: A state of the art report, In Robotics: The Algorithmic Perspective, Proceedings of the 3rd Workshop on the Algorithmic Foundations of Robotics(P. K. Agarwal, L. E. Kavraki, and M. T. Mason, eds.), 1998, A K Peters/CRC Press, pp. 191-209. Google Scholar
  24. L. Guth. Polynomial partitioning for a set of varieties. Math. Proc. Camb. Phil. Soc., 159:459-469 (2015). Google Scholar
  25. L. Guth and N. H. Katz,On the Erdős distinct distances problem in the plane,Annals Math. 181:155-190 (2015). Google Scholar
  26. D. Halperin and M. Sharir,New bounds for lower envelopes in three dimensions, with applications to visibility in terrains.Discrete Comput. Geom., 12: 313-326 (1994). Google Scholar
  27. S. Har-Peled, H. Kaplan, and M. Sharir,Approximating the k-level in three dimensional plane arrangements.In M. Loebl, J. Nešetřil, and R. Thomas, editors,Journey through Discrete Mathematics: A Tribute to Jiri Matoušek, pages 467-504. Springer-Verlag, Berlin Heidelberg, 2017. Google Scholar
  28. D. Haussler and E. Welzl, Epsilon-nets and simplex range queries, Discrete Computat. Geom., 2:127-151 (1987). Google Scholar
  29. V. Koltun,Almost tight upper bounds for vertical decompositions in four dimensions,J. ACM 51(5):699-730 (2004). Google Scholar
  30. V. Koltun,Sharp bounds for vertical decompositions of linear arrangements in four dimensions, Discrete Comput. Geom. 31(3):435-460 (2004). Google Scholar
  31. V. Koltun and M. Sharir,The partition technique for the overlay of envelopes.SIAM J. Comput. 32:841-863 (2003). Google Scholar
  32. J. Matoušek,Efficient partition trees.Discrete Comput. Geom. 8:315-334 (1992). Google Scholar
  33. J. Matoušek, Reporting points in halfspaces. Comput. Geom. Theory Appl., 2:169-186 (1992). Google Scholar
  34. J. Pach and M. Sharir,The upper envelope of piecewise linear functions and the boundary of a region enclosed by convex plates: combinatorial analysis,Discrete Comput. Geom., 4:291-309, (1989). Google Scholar
  35. E. A. Ramos,On range reporting, ray shooting and k-level construction.In Proc. Fifteenth Ann. Sympos. Comput. Geom., 390-399 (1999). Google Scholar
  36. J. T. Schwartz and M. Sharir,On the Piano Movers' problem: II. General techniques forcomputing topological properties of real algebraic manifolds,Advances in Appl. Math., 4:298-351 (1983). Google Scholar
  37. J. T. Schwartz and M. Sharir,On the two-dimensional Davenport-Schinzel problem,J. Symbolic Comput., 10:371-393 (1990). Google Scholar
  38. M. Sharir,Almost tight upper bounds for lower envelopes in higher dimensions.Discrete Comput. Geom., 12:327-345 (1994). Google Scholar
  39. M. Sharir and P.K. Agarwal,Davenport-Schinzel Sequences and Their Geometric Applications,Cambridge University Press, Cambridge-New York-Melbourne, 1995. Google Scholar
  40. B. Tagansky,A new technique for analyzing substructures in arrangements of piecewise linear surfaces,Discrete Comput. Geom., 16:455-479 (1996). Google Scholar
  41. A. Wiernik and M. Sharir,Planar realizations of nonlinear Davenport-Schinzel sequences by segments,Discrete Comput. Geom., 3:15-47 (1988). Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail