In train routing, the headway is the minimum distance that must be maintained between successive trains for safety and robustness. We introduce a model for train routing that requires a fixed headway to be maintained between trains, and study the problem of minimizing the makespan, i.e., the arrival time of the last train, in a single-source single-sink network. For this problem, we first show that there exists an optimal solution where trains move in convoys - that is, the optimal paths for any two trains are either the same or are arc-disjoint. Via this insight, we are able to reduce the approximability of our train routing problem to that of the min-max disjoint paths problem, which asks for a collection of disjoint paths where the maximum length of any path in the collection is as small as possible. While min-max disjoint paths inherits a strong inapproximability result on directed acyclic graphs from the multi-level bottleneck assignment problem, we show that a natural greedy composition approach yields a logarithmic approximation in the number of disjoint paths for series-parallel graphs. We also present an alternative analysis of this approach that yields a guarantee depending on how often the decomposition tree of the series-parallel graph alternates between series and parallel compositions on any root-leaf path.
@InProceedings{bhaskar_et_al:LIPIcs.ESA.2025.34, author = {Bhaskar, Umang and Eickhoff, Katharina and Kauther, Lennart and Matuschke, Jannik and Peis, Britta and Vargas Koch, Laura}, title = {{On the Approximability of Train Routing and the Min-Max Disjoint Paths Problem}}, booktitle = {33rd Annual European Symposium on Algorithms (ESA 2025)}, pages = {34:1--34:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-395-9}, ISSN = {1868-8969}, year = {2025}, volume = {351}, editor = {Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.34}, URN = {urn:nbn:de:0030-drops-245029}, doi = {10.4230/LIPIcs.ESA.2025.34}, annote = {Keywords: Train Routing, Scheduling, Approximation Algorithms, Flows over Time, Min-Max Disjoint Paths} }
Feedback for Dagstuhl Publishing