A covering path for a finite set P of points in the plane is a polygonal path such that every point of P lies on a segment of the path. The vertices of the path need not be at points of P. A covering path is plane if its segments do not cross each other. Let π(n) be the minimum number such that every set of n points in the plane admits a plane covering path with at most π(n) segments. We prove that π(n) ≤ ⌈6n/7⌉. This improves the previous best-known upper bound of ⌈21n/22⌉, due to Biniaz (SoCG 2023). Our proof is constructive and yields a simple O(n log n)-time algorithm for computing a plane covering path.
@InProceedings{a.akitaya_et_al:LIPIcs.ESA.2025.75, author = {A. Akitaya, Hugo and Aloupis, Greg and Biniaz, Ahmad and Bose, Prosenjit and De Carufel, Jean-Lou and Gavoille, Cyril and Iacono, John and Kleist, Linda and Smid, Michiel and Souvaine, Diane and Theocharous, Leonidas}, title = {{An Improved Bound for Plane Covering Paths}}, booktitle = {33rd Annual European Symposium on Algorithms (ESA 2025)}, pages = {75:1--75:10}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-395-9}, ISSN = {1868-8969}, year = {2025}, volume = {351}, editor = {Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.75}, URN = {urn:nbn:de:0030-drops-245432}, doi = {10.4230/LIPIcs.ESA.2025.75}, annote = {Keywords: Covering Path, Upper Bound, Simple Algorithm} }
Feedback for Dagstuhl Publishing