We study the Pigeonhole Equal Subset Sum problem, which is a total-search variant of the Subset Sum problem introduced by Papadimitriou (1994): we are given a set of n positive integers {w₁,…,w_n} with the additional restriction that ∑_{i=1}^n w_i < 2ⁿ - 1, and want to find two different subsets A,B ⊆ [n] such that ∑_{i∈A} w_i = ∑_{i∈B} w_i. Very recently, Jin and Wu (ICALP 2024) gave a randomized algorithm solving Pigeonhole Equal Subset Sum in O^*(2^{0.4n}) time, beating the classical meet-in-the-middle algorithm with O^*(2^{n/2}) runtime. In this paper, we refine Jin and Wu’s techniques to improve the runtime even further to O^*(2^{n/3}).
@InProceedings{jin_et_al:LIPIcs.ESA.2025.86, author = {Jin, Ce and Williams, Ryan and Zhang, Stan}, title = {{New Algorithms for Pigeonhole Equal Subset Sum}}, booktitle = {33rd Annual European Symposium on Algorithms (ESA 2025)}, pages = {86:1--86:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-395-9}, ISSN = {1868-8969}, year = {2025}, volume = {351}, editor = {Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.86}, URN = {urn:nbn:de:0030-drops-245541}, doi = {10.4230/LIPIcs.ESA.2025.86}, annote = {Keywords: pigeonhole principle, subset sums} }
Feedback for Dagstuhl Publishing