While the theory of functional higher-order languages, starting from lambda-calculi, is a well-established research field, it is only in recent years that the operational semantics of higher-order languages with probabilistic operators has started to be extensively studied. A fundamental notion in the semantics of programming languages is that of program equivalence. In higher-order languages, program equivalence is generally formalized as a contextual equivalence [Morris, 1968], which can be hard to prove directly. This has motivated the study of proof techniques for contextual equivalence, from inductive ones, such as logical relations [Andrew Pitts, 2005], to coinductive ones, mainly in the form of bisimulations [Abramsky, 1990]. In this talk I will discuss proof techniques for program equivalence in languages combining higher-order and probabilistic features. Several operational methods, traditionally developed in a deterministic setting, have been adapted to probabilistic higher-order languages [Ales Bizjak and Lars Birkedal, 2015; Dal Lago et al., 2014; Raphaëlle Crubillé and Ugo Dal Lago, 2014]. I will discuss these proof methods and focus on bisimulation-based techniques, showing how probabilities, combined with different language features, force a number of modifications to the definition of bisimulation [Crubillé et al., 2015; Sangiorgi and Vignudelli, 2016].
@InProceedings{vignudelli:LIPIcs.FSCD.2018.4, author = {Vignudelli, Valeria}, title = {{Proof Techniques for Program Equivalence in Probabilistic Higher-Order Languages}}, booktitle = {3rd International Conference on Formal Structures for Computation and Deduction (FSCD 2018)}, pages = {4:1--4:2}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-077-4}, ISSN = {1868-8969}, year = {2018}, volume = {108}, editor = {Kirchner, H\'{e}l\`{e}ne}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2018.4}, URN = {urn:nbn:de:0030-drops-91749}, doi = {10.4230/LIPIcs.FSCD.2018.4}, annote = {Keywords: Lambda Calculus, Contextual Equivalence, Bisimulation, Probabilistic Programming Languages} }
Feedback for Dagstuhl Publishing