Let C be an arithmetic circuit of poly(n) size given as input that computes a polynomial f in F[X], where X={x_1,x_2,...,x_n} and F is any field where the field arithmetic can be performed efficiently. We obtain new algorithms for the following two problems first studied by Koutis and Williams [Ioannis Koutis, 2008; Ryan Williams, 2009; Ioannis Koutis and Ryan Williams, 2016]. - (k,n)-MLC: Compute the sum of the coefficients of all degree-k multilinear monomials in the polynomial f. - k-MMD: Test if there is a nonzero degree-k multilinear monomial in the polynomial f. Our algorithms are based on the fact that the Hadamard product f o S_{n,k}, is the degree-k multilinear part of f, where S_{n,k} is the k^{th} elementary symmetric polynomial. - For (k,n)-MLC problem, we give a deterministic algorithm of run time O^*(n^(k/2+c log k)) (where c is a constant), answering an open question of Koutis and Williams [Ioannis Koutis and Ryan Williams, 2016]. As corollaries, we show O^*(binom{n}{downarrow k/2})-time exact counting algorithms for several combinatorial problems: k-Tree, t-Dominating Set, m-Dimensional k-Matching. - For k-MMD problem, we give a randomized algorithm of run time 4.32^k * poly(n,k). Our algorithm uses only poly(n,k) space. This matches the run time of a recent algorithm [Cornelius Brand et al., 2018] for k-MMD which requires exponential (in k) space. Other results include fast deterministic algorithms for (k,n)-MLC and k-MMD problems for depth three circuits.
@InProceedings{arvind_et_al:LIPIcs.FSTTCS.2019.9, author = {Arvind, V. and Chatterjee, Abhranil and Datta, Rajit and Mukhopadhyay, Partha}, title = {{Fast Exact Algorithms Using Hadamard Product of Polynomials}}, booktitle = {39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)}, pages = {9:1--9:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-131-3}, ISSN = {1868-8969}, year = {2019}, volume = {150}, editor = {Chattopadhyay, Arkadev and Gastin, Paul}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2019.9}, URN = {urn:nbn:de:0030-drops-115711}, doi = {10.4230/LIPIcs.FSTTCS.2019.9}, annote = {Keywords: Hadamard Product, Multilinear Monomial Detection and Counting, Rectangular Permanent, Symmetric Polynomial} }
Feedback for Dagstuhl Publishing