The following is a classical question of Erdős (Nordisk Matematisk Tidskrift, 1963) and of Erdős and Lovász (Colloquia Mathematica Societatis János Bolyai, vol. 10, 1975). Given a hypergraph ℱ with minimum edge-size k, what is the largest function g(k) such that if the expected number of monochromatic edges in ℱ is at most g(k) when the vertices of ℱ are colored red and blue randomly and independently, then we are guaranteed that ℱ is two-colorable? Duraj, Gutowski and Kozik (ICALP 2018) have shown that g(k) ≥ Ω(log k). On the other hand, if ℱ is k-uniform, the lower bound on g(k) is much higher: g(k) ≥ Ω(√{k / log k}) (Radhakrishnan and Srinivasan, Rand. Struct. Alg., 2000). In order to bridge this gap, we define a family of locally-almost-uniform hypergraphs, for which we show, via the randomized algorithm of Cherkashin and Kozik (Rand. Struct. Alg., 2015), that g(k) can be much higher than Ω(log k), e.g., 2^Ω(√{log k}) under suitable conditions.
@InProceedings{radhakrishnan_et_al:LIPIcs.FSTTCS.2021.31, author = {Radhakrishnan, Jaikumar and Srinivasan, Aravind}, title = {{Property B: Two-Coloring Non-Uniform Hypergraphs}}, booktitle = {41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)}, pages = {31:1--31:8}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-215-0}, ISSN = {1868-8969}, year = {2021}, volume = {213}, editor = {Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.31}, URN = {urn:nbn:de:0030-drops-155428}, doi = {10.4230/LIPIcs.FSTTCS.2021.31}, annote = {Keywords: Hypergraph coloring, Propery B} }
Feedback for Dagstuhl Publishing