LIPIcs.FSTTCS.2021.47.pdf
- Filesize: 0.73 MB
- 16 pages
This paper examines Automatic Complexity, a complexity notion introduced by Shallit and Wang in 2001 [Jeffrey O. Shallit and Ming-wei Wang, 2001]. We demonstrate that there exists a normal sequence T such that I(T) = 0 and S(T) ≤ 1/2, where I(T) and S(T) are the lower and upper automatic complexity rates of T respectively. We furthermore show that there exists a Champernowne sequence C, i.e. a sequence formed by concatenating all strings of length one followed by concatenating all strings of length two and so on, such that S(C) ≤ 2/3.
Feedback for Dagstuhl Publishing