Bandwidth of Timed Automata: 3 Classes

Authors Eugene Asarin , Aldric Degorre , Cătălin Dima , Bernardo Jacobo Inclán



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2023.10.pdf
  • Filesize: 0.89 MB
  • 17 pages

Document Identifiers

Author Details

Eugene Asarin
  • Université Paris Cité, CNRS, IRIF, Paris, France
Aldric Degorre
  • Université Paris Cité, CNRS, IRIF, Paris, France
Cătălin Dima
  • LACL, Université Paris-Est Créteil, France
Bernardo Jacobo Inclán
  • Université Paris Cité, CNRS, IRIF, Paris, France

Acknowledgements

We thank the anonymous reviewers for their careful reading and valuable comments which helped to improve the paper.

Cite AsGet BibTex

Eugene Asarin, Aldric Degorre, Cătălin Dima, and Bernardo Jacobo Inclán. Bandwidth of Timed Automata: 3 Classes. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 10:1-10:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.FSTTCS.2023.10

Abstract

Timed languages contain sequences of discrete events ("letters") separated by real-valued delays, they can be recognized by timed automata, and represent behaviors of various real-time systems. The notion of bandwidth of a timed language defined in [Jacobo Inclán et al., 2022] characterizes the amount of information per time unit, encoded in words of the language observed with some precision ε. In this paper, we identify three classes of timed automata according to the asymptotics of the bandwidth of their languages with respect to this precision ε: automata are either meager, with an O(1) bandwidth, normal, with a Θ(log(1/ε)) bandwidth, or obese, with Θ(1/ε) bandwidth. We define two structural criteria and prove that they partition timed automata into these 3 classes of bandwidth, implying that there are no intermediate asymptotic classes. The classification problem of a timed automaton is PSPACE-complete. Both criteria are formulated using morphisms from paths of the timed automaton to some finite monoids extending Puri’s orbit graphs; the proofs are based on Simon’s factorization forest theorem.

Subject Classification

ACM Subject Classification
  • Theory of computation → Quantitative automata
  • Theory of computation → Timed and hybrid models
Keywords
  • timed automata
  • information theory
  • bandwidth
  • entropy
  • orbit graphs
  • factorization forests

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183-235, 1994. URL: https://doi.org/10.1016/0304-3975(94)90010-8.
  2. Eugene Asarin, Nicolas Basset, Marie-Pierre Béal, Aldric Degorre, and Dominique Perrin. Toward a timed theory of channel coding. In Proc. FORMATS, volume 7595 of LNCS, pages 27-42, 2012. URL: https://doi.org/10.1007/978-3-642-33365-1_4.
  3. Eugene Asarin, Nicolas Basset, and Aldric Degorre. Entropy of regular timed languages. Information and Computation, 241:142-176, 2015. URL: https://doi.org/10.1016/j.ic.2015.03.003.
  4. Eugene Asarin, Nicolas Basset, and Aldric Degorre. Distance on timed words and applications. In Proc. FORMATS, volume 11022 of LNCS, pages 199-214, 2018. URL: https://doi.org/10.1007/978-3-030-00151-3_12.
  5. Eugene Asarin, Aldric Degorre, Cătălin Dima, and Bernardo Jacobo Inclán. Bandwidth of timed automata: 3 classes, 2023. URL: https://arxiv.org/abs/2310.01941.
  6. Benoît Barbot, Nicolas Basset, and Alexandre Donzé. Wordgen: a timed word generation tool. In Proc. HSCC, pages 16:1-16:7. ACM, 2023. URL: https://doi.org/10.1145/3575870.3587116.
  7. Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and Automata. Cambridge University Press, 2009. Google Scholar
  8. Mikołaj Bojańczyk. Factorization forests. In Proc. DLT, volume 5583 of LNCS, pages 1-17, 2009. URL: https://doi.org/10.1007/978-3-642-02737-6_1.
  9. Martin R. Bridson and Robert H. Gilman. Context-free languages of sub-exponential growth. Journal of Computer and System Sciences, 64(2):308-310, 2002. URL: https://doi.org/10.1006/jcss.2001.1804.
  10. Noam Chomsky and George A. Miller. Finite state languages. Information and Control, 1(2):91-112, 1958. URL: https://doi.org/10.1016/S0019-9958(58)90082-2.
  11. Paweł Gawrychowski, Dalia Krieger, Narad Rampersad, and Jeffrey Shallit. Finding the growth rate of a regular or context-free language in polynomial time. In Proc. DLT, volume 5257 of LNCS, pages 339-358, 2008. URL: https://doi.org/10.1007/978-3-540-85780-8_27.
  12. Rostislav Grigorchuk and Antonio Machí. An example of an indexed language of intermediate growth. Theoretical Computer Science, 215(1):325-327, 1999. URL: https://doi.org/10.1016/S0304-3975(98)00161-3.
  13. Vineet Gupta, Thomas A. Henzinger, and Radha Jagadeesan. Robust timed automata. In Hybrid and Real-Time Systems, volume 1201 of LNCS, pages 331-345. Springer, 1997. URL: https://doi.org/10.1007/BFb0014736.
  14. K.A.S. Immink. EFMPlus: The coding format of the multimedia compact disc. IEEE Transactions on Consumer Electronics, 41(3):491-497, 1995. URL: https://doi.org/10.1109/30.468040.
  15. K.A.S. Immink. Codes for Mass Data Storage Systems. Shannon Foundation Publ., 2004. Google Scholar
  16. Bernardo Jacobo Inclán, Aldric Degorre, and Eugene Asarin. Bounded delay timed channel coding. In Proc. FORMATS, volume 13465 of LNCS, pages 65-79, 2022. URL: https://doi.org/10.1007/978-3-031-15839-1_4.
  17. Andrei Kolmogorov. Three approaches to the quantitative definition of information. International Journal of Computer Mathematics, 2(1-4):157-168, 1968. URL: https://doi.org/10.1080/00207166808803030.
  18. Andrei Kolmogorov and Vladimir Tikhomirov. ε-entropy and ε-capacity of sets in function spaces. Uspekhi Matematicheskikh Nauk, 14(2):3-86, 1959. URL: https://doi.org/10.1007/978-94-017-2973-4_7.
  19. Douglas Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, 1995. Google Scholar
  20. Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994. Google Scholar
  21. Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic Systems, 10(1-2):87-113, 2000. URL: https://doi.org/10.1023/A:1008387132377.
  22. John Rhodes and Pedro V. Silva. Boolean Representations of Simplicial Complexes and Matroids. Springer International Publishing, 2015. URL: https://doi.org/10.1007/978-3-319-15114-4.
  23. Ocan Sankur. Robustness in timed automata: analysis, synthesis, implementation. PhD thesis, École normale supérieure de Cachan, Paris, France, 2013. URL: https://tel.archives-ouvertes.fr/tel-00910333.
  24. Claude E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27(3):379-423, 1948. URL: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
  25. Imre Simon. Factorization forests of finite height. Theoretical Computer Science, 72(1):65-94, 1990. URL: https://doi.org/10.1016/0304-3975(90)90047-L.
  26. Andreas Weber and Helmut Seidl. On the degree of ambiguity of finite automata. Theoretical Computer Science, 88(2):325-349, 1991. URL: https://doi.org/10.1016/0304-3975(91)90381-B.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail