On Approximation Schemes for Stabbing Rectilinear Polygons

Authors Arindam Khan , Aditya Subramanian, Tobias Widmann, Andreas Wiese



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2024.27.pdf
  • Filesize: 0.84 MB
  • 18 pages

Document Identifiers

Author Details

Arindam Khan
  • Indian Institute of Science, Bengaluru, India
Aditya Subramanian
  • Indian Institute of Science, Bengaluru, India
Tobias Widmann
  • Technical University of Munich, Germany
Andreas Wiese
  • Technical University of Munich, Germany

Cite As Get BibTex

Arindam Khan, Aditya Subramanian, Tobias Widmann, and Andreas Wiese. On Approximation Schemes for Stabbing Rectilinear Polygons. In 44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 323, pp. 27:1-27:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.FSTTCS.2024.27

Abstract

We study the problem of stabbing rectilinear polygons, where we are given n rectilinear polygons in the plane that we want to stab, i.e., we want to select horizontal line segments such that for each given rectilinear polygon there is a line segment that intersects two opposite (parallel) edges of it. Our goal is to find a set of line segments of minimum total length such that all polygons are stabbed. For the special case of rectangles, there is an O(1)-approximation algorithm and the problem is NP-hard [Chan, van Dijk, Fleszar, Spoerhase, and Wolff, 2018]. Also, the problem admits a QPTAS [Eisenbrand, Gallato, Svensson, and Venzin, 2021] and even a PTAS [Khan, Subramanian, and Wiese, 2022]. However, the approximability for the setting of more general polygons, e.g., L-shapes or T-shapes, is completely open.
In this paper, we give conditions under which the problem admits a (1+ε)-approximation algorithm. We assume that each input polygon is composed of rectangles that are placed on top of each other. We show that if all input polygons satisfy the hourglass condition, then the problem admits a quasi-polynomial time approximation scheme. In particular, it is thus unlikely that this case is APX-hard. Furthermore, we show that there exists a PTAS if each input polygon is composed out of rectangles with a bounded range of widths. On the other hand, we prove that the general case of the problem (in which the input polygons may not satisfy these conditions) is APX-hard, already if all input polygons have only eight edges. We remark that all polygons with fewer edges automatically satisfy the hourglass condition. For arbitrary rectilinear polygons we even show a lower bound of Ω(log n) for the possible approximation ratio, which implies that the best possible ratio is in Θ(log n) since the problem is a special case of Set Cover.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Approximation Algorithms
  • Stabbing
  • Rectangles
  • Rectilinear Polygons
  • QPTAS
  • APX-hardness

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Anna Adamaszek, Sariel Har-Peled, and Andreas Wiese. Approximation schemes for independent set and sparse subsets of polygons. J. ACM, 66(4):29:1-29:40, 2019. URL: https://doi.org/10.1145/3326122.
  2. Pankaj K. Agarwal, Hsien-Chih Chang, Subhash Suri, Allen Xiao, and Jie Xue. Dynamic geometric set cover and hitting set. ACM Trans. Algorithms, 18(4):40:1-40:37, 2022. URL: https://doi.org/10.1145/3551639.
  3. Boris Aronov, Esther Ezra, and Micha Sharir. Small-size ε-nets for axis-parallel rectangles and boxes. SIAM J. Comput., 39(7):3248-3282, 2010. URL: https://doi.org/10.1137/090762968.
  4. Nikhil Bansal and Arindam Khan. Improved approximation algorithm for two-dimensional bin packing. In SODA, pages 13-25, 2014. URL: https://doi.org/10.1137/1.9781611973402.2.
  5. Hervé Brönnimann and Michael T. Goodrich. Almost optimal set covers in finite VC-dimension. Discret. Comput. Geom., 14(4):463-479, 1995. URL: https://doi.org/10.1007/BF02570718.
  6. Timothy M. Chan and Elyot Grant. Exact algorithms and APX-hardness results for geometric packing and covering problems. Comput. Geom., 47(2):112-124, 2014. URL: https://doi.org/10.1016/J.COMGEO.2012.04.001.
  7. Timothy M. Chan, Elyot Grant, Jochen Könemann, and Malcolm Sharpe. Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In SODA, pages 1576-1585, 2012. URL: https://doi.org/10.1137/1.9781611973099.125.
  8. Timothy M. Chan, Qizheng He, Subhash Suri, and Jie Xue. Dynamic geometric set cover, revisited. In SODA, pages 3496-3528, 2022. URL: https://doi.org/10.1137/1.9781611977073.139.
  9. Timothy M. Chan, Thomas C. van Dijk, Krzysztof Fleszar, Joachim Spoerhase, and Alexander Wolff. Stabbing rectangles by line segments - how decomposition reduces the shallow-cell complexity. In ISAAC, pages 61:1-61:13, 2018. URL: https://doi.org/10.4230/LIPICS.ISAAC.2018.61.
  10. Kang-Tsung Chang. Introduction to geographic information systems (4. ed.). McGraw-Hill, 2008. Google Scholar
  11. Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approximation and online algorithms for multidimensional bin packing: A survey. Computer Science Review, 24:63-79, 2017. URL: https://doi.org/10.1016/J.COSREV.2016.12.001.
  12. Vasek Chvátal. A greedy heuristic for the set-covering problem. Math. Oper. Res., 4(3):233-235, 1979. URL: https://doi.org/10.1287/MOOR.4.3.233.
  13. Aparna Das, Krzysztof Fleszar, Stephen G. Kobourov, Joachim Spoerhase, Sankar Veeramoni, and Alexander Wolff. Approximating the generalized minimum manhattan network problem. Algorithmica, 80(4):1170-1190, 2018. URL: https://doi.org/10.1007/S00453-017-0298-0.
  14. Emily Dinan, Alice Nadeau, and Isaac Odegard. Folding concave polygons into convex polyhedra: The L-shape. Rose-Hulman Undergraduate Mathematics Journal, 16(1):13, 2015. Google Scholar
  15. Irit Dinur and David Steurer. Analytical approach to parallel repetition. In STOC, pages 624-633, 2014. URL: https://doi.org/10.1145/2591796.2591884.
  16. Friedrich Eisenbrand, Martina Gallato, Ola Svensson, and Moritz Venzin. A QPTAS for stabbing rectangles. arXiv, 2021. URL: https://arxiv.org/abs/2107.06571.
  17. Adeel Farooq, Mustafa Habib, Abid Mahboob, Waqas Nazeer, and Shin Min Kang. Zagreb polynomials and redefined zagreb indices of dendrimers and polyomino chains. Open Chemistry, 17(1):1374-1381, 2019. URL: https://doi.org/10.1515/chem-2019-0144.
  18. Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634-652, 1998. URL: https://doi.org/10.1145/285055.285059.
  19. Waldo Gálvez, Fabrizio Grandoni, Salvatore Ingala, Sandy Heydrich, Arindam Khan, and Andreas Wiese. Approximating geometric knapsack via L-packings. ACM Trans. Algorithms, 17(4):33:1-33:67, 2021. URL: https://doi.org/10.1145/3473713.
  20. Waldo Gálvez, Fabrizio Grandoni, Arindam Khan, Diego Ramírez-Romero, and Andreas Wiese. Improved approximation algorithms for 2-dimensional knapsack: Packing into multiple L-shapes, spirals, and more. In SoCG, pages 39:1-39:17, 2021. URL: https://doi.org/10.4230/LIPICS.SOCG.2021.39.
  21. Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy Pittu, and Andreas Wiese. A (2+ε)-approximation algorithm for maximum independent set of rectangles. arXiv, 2021. URL: https://arxiv.org/abs/2106.00623.
  22. M. R. Garey and David S. Johnson. The rectilinear steiner tree problem is NP complete. SIAM Journal of Applied Mathematics, 32:826-834, 1977. URL: https://doi.org/10.1137/0132071.
  23. M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. URL: https://doi.org/10.5555/574848.
  24. Daya Ram Gaur, Toshihide Ibaraki, and Ramesh Krishnamurti. Constant ratio approximation algorithms for the rectangle stabbing problem and the rectilinear partitioning problem. J. Algorithms, 43(1):138-152, 2002. URL: https://doi.org/10.1006/JAGM.2002.1221.
  25. Solomon W. Golomb. Tiling with polyominoes. Journal of Combinatorial Theory, 1(2):280-296, 1966. URL: https://doi.org/10.1016/S0021-9800(66)80033-9.
  26. Solomon W. Golomb. Polyominoes: puzzles, patterns, problems, and packings, volume 111. Princeton University Press, 1996. URL: https://doi.org/10.2307/j.ctv10vm1sc.
  27. Rolf Harren, Klaus Jansen, Lars Prädel, and Rob van Stee. A (5/3 + ε)-approximation for strip packing. Comput. Geom., 47(2):248-267, 2014. URL: https://doi.org/10.1016/J.COMGEO.2013.08.008.
  28. Klaus Jansen, Arindam Khan, Marvin Lira, and K. V. N. Sreenivas. A PTAS for packing hypercubes into a knapsack. In ICALP, pages 78:1-78:20, 2022. URL: https://doi.org/10.4230/LIPICS.ICALP.2022.78.
  29. Iwan Jensen and Anthony J. Guttmann. Statistics of lattice animals (polyominoes) and polygons. Journal of Physics A: Mathematical and General, 33(29):L257, 2000. URL: https://doi.org/10.1088/0305-4470/33/29/102.
  30. Arindam Khan, Aditya Lonkar, Arnab Maiti, Amatya Sharma, and Andreas Wiese. Tight approximation algorithms for two-dimensional guillotine strip packing. In ICALP, pages 80:1-80:20, 2022. URL: https://doi.org/10.4230/LIPICS.ICALP.2022.80.
  31. Arindam Khan, Aditya Lonkar, Saladi Rahul, Aditya Subramanian, and Andreas Wiese. Online and dynamic algorithms for geometric set cover and hitting set. In SoCG, pages 46:1-46:17, 2023. URL: https://doi.org/10.4230/LIPICS.SOCG.2023.46.
  32. Arindam Khan, Arnab Maiti, Amatya Sharma, and Andreas Wiese. On guillotine separable packings for the two-dimensional geometric knapsack problem. In SoCG, pages 48:1-48:17, 2021. URL: https://doi.org/10.4230/LIPICS.SOCG.2021.48.
  33. Arindam Khan and Eklavya Sharma. Tight approximation algorithms for geometric bin packing with skewed items. Algorithmica, 85(9):2735-2778, 2023. URL: https://doi.org/10.1007/S00453-023-01116-0.
  34. Arindam Khan, Aditya Subramanian, Tobias Widmann, and Andreas Wiese. On approximation schemes for stabbing rectilinear polygons. arXiv, 2024. URL: https://doi.org/10.48550/arXiv.2402.02412.
  35. Arindam Khan, Aditya Subramanian, and Andreas Wiese. A PTAS for the horizontal rectangle stabbing problem. In IPCO, pages 361-374, 2022. URL: https://doi.org/10.1007/978-3-031-06901-7_27.
  36. Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in grassmann graph have near-perfect expansion. In FOCS, pages 592-601, 2018. URL: https://doi.org/10.1109/FOCS.2018.00062.
  37. Sofia Kovaleva and Frits C. R. Spieksma. Approximation algorithms for rectangle stabbing and interval stabbing problems. SIAM J. Discret. Math., 20(3):748-768, 2006. URL: https://doi.org/10.1137/S089548010444273X.
  38. Jens Lienig and Juergen Scheible. Fundamentals of layout design for electronic circuits. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-39284-0.
  39. Mario Alberto López and Dinesh P. Mehta. Efficient decomposition of polygons into L-shapes with application to VLSI layouts. ACM Trans. Design Autom. Electr. Syst., 1(3):371-395, 1996. URL: https://doi.org/10.1145/234860.234865.
  40. George Martin. Polyominoes: A guide to puzzles and problems in tiling. Cambridge University Press, 1991. URL: https://doi.org/10.1080/00029890.1993.11990425.
  41. Joseph S. B. Mitchell. Approximating maximum independent set for rectangles in the plane. In FOCS, pages 339-350, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00042.
  42. Nabil H. Mustafa, Rajiv Raman, and Saurabh Ray. Settling the apx-hardness status for geometric set cover. In FOCS, pages 541-550, 2014. URL: https://doi.org/10.1109/FOCS.2014.64.
  43. Thomas Ottmann, Eljas Soisalon-Soininen, and Derick Wood. On the definition and computation of rectilinear convex hulls. Information Sciences, 33(3):157-171, 1984. URL: https://doi.org/10.1016/0020-0255(84)90025-2.
  44. Helmut Pottmann, Andreas Asperl, Michael Hofer, Axel Kilian, and Daril Bentley. Architectural geometry, volume 724. Bentley Institute Press Exton, 2007. URL: https://doi.org/10.1016/j.cag.2014.11.002.
  45. Peter Shirley, Michael Ashikhmin, and Steve Marschner. Fundamentals of computer graphics. AK Peters/CRC Press, 2009. URL: https://doi.org/10.5555/1628957.
  46. Kasturi R. Varadarajan. Weighted geometric set cover via quasi-uniform sampling. In STOC, pages 641-648, 2010. URL: https://doi.org/10.1145/1806689.1806777.
  47. Chris Worman and J. Mark Keil. Polygon decomposition and the orthogonal art gallery problem. Int. J. Comput. Geom. Appl., 17(02):105-138, 2007. URL: https://doi.org/10.1142/S0218195907002264.
  48. Bei Yu, Jhih-Rong Gao, and David Z. Pan. L-shape based layout fracturing for e-beam lithography. In ASP-DAC, pages 249-254, 2013. URL: https://doi.org/10.1109/ASPDAC.2013.6509604.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail