Additive Word Complexity and Walnut

Authors Pierre Popoli , Jeffrey Shallit , Manon Stipulanti



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2024.32.pdf
  • Filesize: 0.94 MB
  • 18 pages

Document Identifiers

Author Details

Pierre Popoli
  • Department of Mathematics, University of Liège, Belgium
Jeffrey Shallit
  • School of Computer Science, University of Waterloo, Canada
Manon Stipulanti
  • Department of Mathematics, University of Liège, Belgium

Acknowledgements

We thank the reviewers for providing valuable remarks leading to a better version of the paper. We also thank Matthieu Rosenfeld and Markus Whiteland for helpful discussions, and Eric Rowland for implementing useful Mathematica code.

Cite As Get BibTex

Pierre Popoli, Jeffrey Shallit, and Manon Stipulanti. Additive Word Complexity and Walnut. In 44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 323, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.FSTTCS.2024.32

Abstract

In combinatorics on words, a classical topic of study is the number of specific patterns appearing in infinite sequences. For instance, many works have been dedicated to studying the so-called factor complexity of infinite sequences, which gives the number of different factors (contiguous subblocks of their symbols), as well as abelian complexity, which counts factors up to a permutation of letters. In this paper, we consider the relatively unexplored concept of additive complexity, which counts the number of factors up to additive equivalence. We say that two words are additively equivalent if they have the same length and the total weight of their letters is equal. Our contribution is to expand the general knowledge of additive complexity from a theoretical point of view and consider various famous examples. We show a particular case of an analog of the long-standing conjecture on the regularity of the abelian complexity of an automatic sequence. In particular, we use the formalism of logic, and the software Walnut, to decide related properties of automatic sequences. We compare the behaviors of additive and abelian complexities, and we also consider the notion of abelian and additive powers. Along the way, we present some open questions and conjectures for future work.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorics on words
Keywords
  • Combinatorics on words
  • Abelian complexity
  • Additive complexity
  • Automatic sequences
  • Walnut software

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Jean-Paul Allouche, John Campbell, Jeffrey Shallit, and Manon Stipulanti. The reflection complexity of sequences over finite alphabets. arXiv preprint. URL: https://doi.org/10.48550/arXiv.2406.09302.
  2. Jean-Paul Allouche, Michel Dekking, and Martine Queffélec. Hidden automatic sequences. Comb. Theory, 1:15, 2021. Id/No 20. URL: https://doi.org/10.5070/C61055386.
  3. Jean-Paul Allouche and Jeffrey Shallit. Automatic sequences: Theory, applications, generalizations. Cambridge University Press, Cambridge, 2003. URL: https://doi.org/10.1017/CBO9780511546563.
  4. Jonathan Andrade and Lucas Mol. Avoiding abelian and additive powers in rich words, 2024. arXiv preprint. URL: https://doi.org/10.48550/arXiv.2408.15390.
  5. Hayri Ardal, Tom Brown, Veselin Jungić, and Julian Sahasrabudhe. On abelian and additive complexity in infinite words. Integers, 12(5):795-804, 2012. URL: https://doi.org/10.1515/integers-2012-0005.
  6. Graham Banero. On additive complexity of infinite words. J. Integer Seq., 16(1):Article 13.1.5, 20, 2013. Google Scholar
  7. Jean Berstel. Sur les mots sans carré définis par un morphisme. In Automata, languages and programming (Sixth Colloq., Graz, 1979), volume 71 of Lecture Notes in Comput. Sci., pages 16-25. Springer, Berlin-New York, 1979. URL: https://doi.org/10.1007/3-540-09510-1_2.
  8. Jean Berstel and Dominique Perrin. The origins of combinatorics on words. Eur. J. Comb., 28(3):996-1022, 2007. URL: https://doi.org/10.1016/j.ejc.2005.07.019.
  9. Jean Berstel and Christophe Reutenauer. Noncommutative Rational Series With Applications, volume 137 of Encyclopedia of Mathematics and Its Applications. Cambridge Univ. Press, 2011. Google Scholar
  10. Francine Blanchet-Sadri, James D. Currie, Narad Rampersad, and Nathan Fox. Abelian complexity of fixed point of morphism 0 ↦ 012, 1 ↦ 02, 2 ↦ 1. Integers, 14:A11, 2014. URL: http://math.colgate.edu/%7Eintegers/o11/o11.Abstract.html.
  11. Thomas C. Brown and Allen R. Freedman. Arithmetic progressions in lacunary sets. Rocky Mountain J. Math., 17:587-596, 1987. Google Scholar
  12. Tom Brown. Approximations of additive squares in infinite words. Integers, 12(5):805-809, a22, 2012. URL: https://doi.org/10.1515/integers-2012-0006.
  13. Arturo Carpi and Cristiano Maggi. On synchronized sequences and their separators. Theor. Inform. Appl., 35(6):513-524, 2001. URL: https://doi.org/10.1051/ita:2001129.
  14. Julien Cassaigne, James D. Currie, Luke Schaeffer, and Jeffrey Shallit. Avoiding three consecutive blocks of the same size and same sum. J. ACM, 61(2):Art. 10, 17, 2014. URL: https://doi.org/10.1145/2590775.
  15. Julien Cassaigne, Sébastien Ferenczi, and Luca Q. Zamboni. Imbalances in Arnoux-Rauzy sequences. Ann. Inst. Fourier, 50(4):1265-1276, 2000. URL: https://doi.org/10.5802/aif.1792.
  16. Julien Cassaigne, Gwénaël Richomme, Kalle Saari, and Luca Q. Zamboni. Avoiding abelian powers in binary words with bounded abelian complexity. Int. J. Found. Comput. Sci., 22(4):905-920, 2011. URL: https://doi.org/10.1142/S0129054111008489.
  17. Jin Chen, Zhixiong Wen, and Wen Wu. On the additive complexity of a Thue-Morse-like sequence. Discrete Appl. Math., 260:98-108, 2019. URL: https://doi.org/10.1016/j.dam.2019.01.008.
  18. Alan Cobham. Uniform tag sequences. Math. Systems Theory, 6:164-192, 1972. URL: https://doi.org/10.1007/BF01706087.
  19. Ethan M. Coven and G. A. Hedlund. Sequences with minimal block growth. Math. Systems Theory, 7:138-153, 1973. URL: https://doi.org/10.1007/BF01762232.
  20. James Currie and Narad Rampersad. Recurrent words with constant abelian complexity. Adv. Appl. Math., 47(1):116-124, 2011. URL: https://doi.org/10.1016/j.aam.2010.05.001.
  21. Fabien Durand. Cobham’s theorem for substitutions. Journal of the European Mathematical Society, 13(6):1799-1814, September 2011. URL: https://doi.org/10.4171/jems/294.
  22. Gabriele Fici, Alessio Langiu, Thierry Lecroq, Arnaud Lefebvre, Filippo Mignosi, Jarkko Peltomäki, and Élise Prieur-Gaston. Abelian powers and repetitions in Sturmian words. Theoret. Comput. Sci., 635:16-34, 2016. URL: https://doi.org/10.1016/j.tcs.2016.04.039.
  23. Gabriele Fici, Alessio Langiu, Thierry Lecroq, Arnaud Lefebvre, Filippo Mignosi, and Élise Prieur-Gaston. Abelian repetitions in Sturmian words. In Developments in Language Theory, volume 7907 of Lecture Notes in Comput. Sci., pages 227-238. Springer, Heidelberg, 2013. URL: https://doi.org/10.1007/978-3-642-38771-5_21.
  24. Lorenz Halbeisen and Norbert Hungerbühler. An application of Van der Waerden’s theorem in additive number theory. INTEGERS, 0:#A7, 2000. Available online at URL: https://math.colgate.edu/~integers/a7/a7.pdf.
  25. Idrissa Kaboré and Boucaré Kientéga. Abelian complexity of Thue-Morse word over a ternary alphabet. In Combinatorics on words, volume 10432 of Lecture Notes in Comput. Sci., pages 132-143. Springer, Cham, 2017. URL: https://doi.org/10.1007/978-3-319-66396-8_13.
  26. M. Lothaire. Combinatorics on words. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1997. URL: https://doi.org/10.1017/CBO9780511566097.
  27. Marston Morse and Gustav A. Hedlund. Symbolic dynamics. II: Sturmian trajectories. Am. J. Math., 62:1-42, 1940. URL: https://doi.org/10.2307/2371431.
  28. Hamoon Mousavi. Automatic theorem proving in Walnut, 2016. arXiv preprint. URL: https://doi.org/10.48550/arXiv.1603.06017.
  29. Aline Parreau, Michel Rigo, Eric Rowland, and Élise Vandomme. A new approach to the 2-regularity of the 𝓁-abelian complexity of 2-automatic sequences. Electron. J. Comb., 22(1):research paper p1.27, 44, 2015. URL: www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p27.
  30. Giuseppe Pirillo and Stefano Varricchio. On uniformly repetitive semigroups. Semigroup Forum, 49:125-129, 1994. Google Scholar
  31. Michaël Rao. On some generalizations of abelian power avoidability. Theoret. Comput. Sci., 601:39-46, 2015. URL: https://doi.org/10.1016/j.tcs.2015.07.026.
  32. Gwénaël Richomme, Kalle Saari, and Luca Q. Zamboni. Balance and abelian complexity of the Tribonacci word. Adv. in Appl. Math., 45(2):212-231, 2010. URL: https://doi.org/10.1016/j.aam.2010.01.006.
  33. Gwénaël Richomme, Kalle Saari, and Luca Q. Zamboni. Abelian complexity of minimal subshifts. J. Lond. Math. Soc. (2), 83(1):79-95, 2011. URL: https://doi.org/10.1112/jlms/jdq063.
  34. Michel Rigo and Arnaud Maes. More on generalized automatic sequences. Journal of Automata, Languages, and Combinatorics, 7(3):351-376, 2002. URL: https://doi.org/10.25596/jalc-2002-351.
  35. Michel Rigo, Manon Stipulanti, and Markus A. Whiteland. Automaticity and Parikh-collinear morphisms. In Combinatorics on words, volume 13899 of Lecture Notes in Comput. Sci., pages 247-260. Springer, Cham, 2023. URL: https://doi.org/10.1007/978-3-031-33180-0_19.
  36. Michel Rigo, Manon Stipulanti, and Markus A. Whiteland. Automatic abelian complexities of Parikh-collinear fixed points, 2024. To be published in Theory Comput. Syst. URL: https://doi.org/10.48550/arXiv.2405.18032.
  37. Julian Sahasrabudhe. Sturmian words and constant additive complexity. Integers, 15:Paper No. A30, 8, 2015. Google Scholar
  38. Jeffrey Shallit. A generalization of automatic sequences. Theoret. Comput. Sci., 61(1):1-16, 1988. URL: https://doi.org/10.1016/0304-3975(88)90103-X.
  39. Jeffrey Shallit. Abelian complexity and synchronization. Integers, 21:Paper No. A36, 14, 2021. Google Scholar
  40. Jeffrey Shallit. The logical approach to automatic sequences - exploring combinatorics on words with Walnut, volume 482 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2023. Google Scholar
  41. Jeffrey Shallit. Note on a Fibonacci parity sequence. Cryptogr. Commun., 15(2):309-315, 2023. URL: https://doi.org/10.1007/s12095-022-00592-5.
  42. Neil J. A. Sloane and et al. The On-Line Encyclopedia of Integer Sequences. URL: https://oeis.org.
  43. Ondřej Turek. Abelian complexity and abelian co-decomposition. Theoret. Comput. Sci., 469:77-91, 2013. URL: https://doi.org/10.1016/j.tcs.2012.10.034.
  44. Ondřej Turek. Abelian complexity function of the Tribonacci word. J. Integer Seq., 18(3):Article 15.3.4, 29, 2015. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail