The Synchronization Game on Subclasses of Automata

Authors Henning Fernau , Carolina Haase, Stefan Hoffmann

Thumbnail PDF


  • Filesize: 0.78 MB
  • 17 pages

Document Identifiers

Author Details

Henning Fernau
  • Fachbereich IV, Informatikwissenschaften, Universität Trier, Germany
Carolina Haase
  • Informatik, Hochschule Trier, Germany
Stefan Hoffmann
  • Fachbereich IV, Informatikwissenschaften, Universität Trier, Germany

Cite AsGet BibTex

Henning Fernau, Carolina Haase, and Stefan Hoffmann. The Synchronization Game on Subclasses of Automata. In 11th International Conference on Fun with Algorithms (FUN 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 226, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


The notion of synchronization of finite automata is connected to one of the long-standing open problems in combinatorial automata theory, which is Černý’s Conjecture. In this paper, we focus on so-called synchronization games. We will discuss how to present synchronization questions in a playful way. This leads us to study related complexity questions on certain classes of finite automata. More precisely, we consider weakly acyclic, commutative and k-simple idempotent automata. We encounter a number of complexity classes, ranging from L up to PSPACE.

Subject Classification

ACM Subject Classification
  • Theory of computation → Regular languages
  • Theory of computation → Complexity classes
  • Synchronization of finite automata
  • computational complexity


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Dimitry S. Ananichev and Mikhail V. Volkov. Synchronizing monotonic automata. Theoretical Computer Science, 327(3):225-239, 2004. Google Scholar
  2. Dimitry S. Ananichev, Mikhail V. Volkov, and Yu. I. Zaks. Synchronizing automata with a letter of deficiency 2. Theoretical Computer Science, 376(1-2):30-41, 2007. Google Scholar
  3. Janet H. Barnett. Early writings on graph theory: Hamiltonian circuits and the icosian game. In Brian Hopkins, editor, Resources for Teaching Discrete Mathematics: Classroom Projects, History Modules, and Articles, volume 74 of MAA Notes, pages 217-224. Mathematical Association of America, 2009. Google Scholar
  4. Andreas Blass, Yuri Gurevich, Lev Nachmanson, and Margus Veanes. Play to test. In Wolfgang Grieskamp and Carsten Weise, editors, Formal Approaches to Software Testing, 5th International Workshop, FATES, volume 3997 of LNCS, pages 32-46. Springer, 2005. Google Scholar
  5. Stojan Bogdanović, Balázs Imreh, Miroslav Cirić, and Tatjana Petković. Directable automata and their generalizations: A survey. Novi Sad J. Math., 29(2), 1999. Google Scholar
  6. Jens Bruchertseifer and Henning Fernau. Synchronizing series-parallel deterministic automata with loops and related problems. RAIRO Informatique théorique et Applications/Theoretical Informatics and Applications, 55(7):1-24, 2021. Google Scholar
  7. Janusz A. Brzozowski and Ernst L. Leiss. On equations for regular languages, finite automata, and sequential networks. Theoretical Computer Science, 10:19-35, 1980. URL:
  8. Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. Journal of the ACM, 28(1):114-133, 1981. URL:
  9. Erik D. Demaine. Playing games with algorithms: Algorithmic combinatorial game theory. In Jirí Sgall, Ales Pultr, and Petr Kolman, editors, Mathematical Foundations of Computer Science 2001, 26th International Symposium, MFCS, volume 2136 of LNCS, pages 18-32. Springer, 2001. Google Scholar
  10. David Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing, 19(3):500-510, 1990. Google Scholar
  11. Henning Fernau, Pinar Heggernes, and Yngve Villanger. A multi-parameter analysis of hard problems on deterministic finite automata. Journal of Computer and System Sciences, 81(4):747-765, 2015. Google Scholar
  12. Henning Fernau and Stefan Hoffmann. Extensions to minimal synchronizing words. Journal of Automata, Languages and Combinatorics, 24(2-4):287-307, 2019. Google Scholar
  13. Fedor M. Fominykh, Pavel V. Martyugin, and Mikhail V. Volkov. P(l)aying for synchronization. International Journal of Foundations of Computer Science, 24(6):765-780, 2013. Google Scholar
  14. Pavel Goralčík and Václav Koubek. Rank problems for composite transformations. International Journal of Algebra and Computation, 5(3):309-316, 1995. Google Scholar
  15. Vasily V. Gusev. The vertex cover game: Application to transport networks. Omega, 97:102102, 2020. Google Scholar
  16. Robert A. Hearn and Erik D. Demaine. Games, puzzles and computation. A K Peters, 2009. Google Scholar
  17. Stefan Hoffmann. Constrained synchronization and commutativity. Theoretical Computer Science, 890:147-170, 2021. Google Scholar
  18. Stefan Hoffmann. Constrained synchronization and subset synchronization problems for weakly acyclic automata. In Nelma Moreira and Rogério Reis, editors, Developments in Language Theory - 25th International Conference, DLT, volume 12811 of LNCS, pages 204-216. Springer, 2021. Google Scholar
  19. Neil Immerman. Length of predicate calculus formulas as a new complexity measure. In 20th Annual Symposium on Foundations of Computer Science, FOCS, pages 337-347. IEEE Computer Society, 1979. Google Scholar
  20. Raphael M. Jungers. The synchronizing probability function of an automaton. SIAM Journal of Discrete Mathematics, 26:177-192, 2012. Google Scholar
  21. Eryk Kopczynski. Half-positional determinacy of infinite games. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, 33rd International Colloquium, ICALP, Proceedings, Part II, volume 4052 of LNCS, pages 336-347. Springer, 2006. Google Scholar
  22. Pavel Martyugin. Complexity of problems concerning reset words for some partial cases of automata. Acta Cybernetica, 19(2):517-536, 2009. Google Scholar
  23. Robert McNaughton and Seymour A. Papert. Counter-Free Automata (M.I.T. Research Monograph No. 65). The MIT Press, 1971. Google Scholar
  24. Mirjana Mikalački and Miloš Stojaković. Fast strategies in biased maker-breaker games. Discrete Mathematics & Theoretical Computer Science, 20(2), 2018. Google Scholar
  25. Juan Andres Montoya and Christian Nolasco. Some remarks on synchronization, games and planar automata. Electronic Notes in Theoretical Computer Science, 339:85-97, 2018. The XLII Latin American Computing Conference. Google Scholar
  26. Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing sequences. Information and Computation, 103:299-347, 1993. Google Scholar
  27. Igor Rystsov. On minimizing the length of synchronizing words for finite automata. In Theory of Designing of Computing Systems, pages 75-82. Institute of Cybernetics of Ukrainian Acad. Sci., 1980. (in Russian). Google Scholar
  28. Igor Rystsov. Reset words for commutative and solvable automata. Theoretical Computer Science, 172(1-2):273-279, 1997. Google Scholar
  29. Igor Rystsov. Estimation of the length of reset words for automata with simple idempotents. Cybernetics and Systems Analysis, 36(3):339-344, 2000. Google Scholar
  30. Andrew Ryzhikov. Synchronization problems in automata without non-trivial cycles. Theoretical Computer Science, 787:77-88, 2019. Implementation and Application of Automata (CIAA 2017). Google Scholar
  31. Andrew Ryzhikov and Anton Shemyakov. Subset synchronization in monotonic automata. Fundamenta Informaticae, 162(2-3):205-221, 2018. Google Scholar
  32. Sven Sandberg. Homing and synchronizing sequences. In Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander Pretschner, editors, Model-Based Testing of Reactive Systems, Advanced Lectures [The volume is the outcome of a research seminar that was held in Schloss Dagstuhl in January 2004], volume 3472 of LNCS, pages 5-33. Springer, 2004. Google Scholar
  33. Tamara Shcherbak. The interval rank of monotonic automata. In Jacques Farré, Igor Litovsky, and Sylvain Schmitz, editors, Implementation and Application of Automata, 10th International Conference, CIAA, volume 3845 of LNCS, pages 273-281. Springer, 2005. Google Scholar
  34. Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1-22, 1976. Google Scholar
  35. Ivan Hal Sudborough. The complexity of path problems in graphs and path systems of bounded bandwidth. In Hartmut Noltemeier, editor, Graphtheoretic Concepts in Computer Science, Proceedings of the International Workshop WG '80, volume 100 of LNCS, pages 293-305. Springer, 1981. Google Scholar
  36. Marek Szykula. Checking whether an automaton is monotonic is NP-complete. In Frank Drewes, editor, Implementation and Application of Automata - 20th International Conference, CIAA, volume 9223 of LNCS, pages 279-291. Springer, 2015. Google Scholar
  37. Mikhail. V. Volkov. Synchronizing automata and the Černý conjecture. In Carlos Martín-Vide, Friedrich Otto, and Henning Fernau, editors, Language and Automata Theory and Applications, Second International Conference, LATA, volume 5196 of LNCS, pages 11-27. Springer, 2008. Google Scholar
  38. Mikhail V. Volkov. Preface: Special issue on the Černý conjecture. Journal of Automata, Languages and Combinatorics, 24(2-4):119-121, 2019. Google Scholar