Mirror games were invented by Garg and Schnieder (ITCS 2019). Alice and Bob take turns (with Alice playing first) in declaring numbers from the set {1,2, …, 2n}. If a player picks a number that was previously played, that player loses and the other player wins. If all numbers are declared without repetition, the result is a draw. Bob has a simple mirror strategy that assures he won't lose and requires no memory. On the other hand, Garg and Schenier showed that every deterministic Alice needs memory of size linear in n in order to secure a draw. Regarding probabilistic strategies, previous work showed that a model where Alice has access to a secret random perfect matching over {1,2, …, 2n} allows her to achieve a draw in the game w.p. a least 1-1/n and using only polylog bits of memory. We show that the requirement for secret bits is crucial: for an "open book" Alice with no secrets (Bob knows her memory but not future coin flips) and memory of at most n/4c bits for any c ≥ 2, there is a Bob that wins w.p. close to 1-{2^{-c/2}}.
@InProceedings{magen_et_al:LIPIcs.FUN.2022.20, author = {Magen, Roey and Naor, Moni}, title = {{Mirror Games Against an Open Book Player}}, booktitle = {11th International Conference on Fun with Algorithms (FUN 2022)}, pages = {20:1--20:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-232-7}, ISSN = {1868-8969}, year = {2022}, volume = {226}, editor = {Fraigniaud, Pierre and Uno, Yushi}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2022.20}, URN = {urn:nbn:de:0030-drops-159900}, doi = {10.4230/LIPIcs.FUN.2022.20}, annote = {Keywords: Mirror Games, Space Complexity, Eventown-Oddtown} }
Feedback for Dagstuhl Publishing