Drawing Planar Graphs and 1-Planar Graphs Using Cubic Bézier Curves with Bounded Curvature

Authors David Eppstein, Michael T. Goodrich , Abraham M. Illickan



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.39.pdf
  • Filesize: 1.54 MB
  • 17 pages

Document Identifiers

Author Details

David Eppstein
  • University of California, Irvine, CA, USA
Michael T. Goodrich
  • University of California, Irvine, CA, USA
Abraham M. Illickan
  • University of California, Irvine, CA, USA

Cite AsGet BibTex

David Eppstein, Michael T. Goodrich, and Abraham M. Illickan. Drawing Planar Graphs and 1-Planar Graphs Using Cubic Bézier Curves with Bounded Curvature. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 39:1-39:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.39

Abstract

We study algorithms for drawing planar graphs and 1-planar graphs using cubic Bézier curves with bounded curvature. We show that any n-vertex 1-planar graph has a 1-planar RAC drawing using a single cubic Bézier curve per edge, and this drawing can be computed in O(n) time given a combinatorial 1-planar drawing. We also show that any n-vertex planar graph G can be drawn in O(n) time with a single cubic Bézier curve per edge, in an O(n)× O(n) bounding box, such that the edges have Θ(1/degree(v)) angular resolution, for each v ∈ G, and O(√n) curvature.

Subject Classification

ACM Subject Classification
  • Theory of computation
Keywords
  • graph drawing
  • planar graphs
  • Bézier curves
  • and RAC drawings

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Patrizio Angelini, Michael A. Bekos, Henry Förster, and Michael Kaufmann. On RAC drawings of graphs with one bend per edge. Theoretical Computer Science, 828-829:42-54, 2020. URL: https://doi.org/10.1016/j.tcs.2020.04.018.
  2. Michael A. Bekos, Walter Didimo, Giuseppe Liotta, Saeed Mehrabi, and Fabrizio Montecchiani. On RAC drawings of 1-planar graphs. Theoretical Computer Science, 689:48-57, 2017. URL: https://doi.org/10.1016/j.tcs.2017.05.039.
  3. Ulrik Brandes and Dorothea Wagner. Using graph layout to visualize train interconnection data. Journal of Graph Algorithms and Applications, 4(3):135-155, 2000. URL: https://doi.org/10.1007/3-540-37623-2_4.
  4. C. C. Cheng, Christian A. Duncan, Michael T. Goodrich, and Stephen G. Kobourov. Drawing planar graphs with circular arcs. Discrete & Computational Geometry, 25:405-418, 1999. URL: https://doi.org/10.1007/s004540010080.
  5. Roman Chernobelskiy, Kathryn I. Cunningham, Michael T. Goodrich, Stephen G. Kobourov, and Lowell Trott. Force-directed Lombardi-style graph drawing. In Marc van Kreveld and Bettina Speckmann, editors, Graph Drawing (GD), pages 320-331. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-25878-7_31.
  6. Norishige Chiba. Linear algorithms for convex drawings of planar graphs. Progress in graph theory, pages 153-173, 1984. Google Scholar
  7. Paul de Casteljau. Outillage methodes calcul. Enveloppe Soleau 40.040, 1959. Google Scholar
  8. Paul de Casteljau. Courbes et surfaces à pôles. Microfiche P 4147-1, 1963. Google Scholar
  9. Hubert De Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a grid. Combinatorica, 10:41-51, 1990. URL: https://doi.org/10.1007/BF02122694.
  10. Walter Didimo, Peter Eades, and Giuseppe Liotta. Drawing graphs with right angle crossings. Theoretical Computer Science, 412(39):5156-5166, 2011. URL: https://doi.org/10.1016/j.tcs.2011.05.025.
  11. Walter Didimo, Giuseppe Liotta, Saeed Mehrabi, and Fabrizio Montecchiani. 1-bend RAC drawings of 1-planar graphs. In Yifan Hu and Martin Nöllenburg, editors, Graph Drawing and Network Visualization (GD), pages 335-343. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-50106-2_26.
  12. Christian Duncan, David Eppstein, Michael Goodrich, Stephen Kobourov, and Martin Nöllenburg. Lombardi drawings of graphs. Journal of Graph Algorithms and Applications, 16(1):85-108, 2012. URL: https://doi.org/10.7155/jgaa.00251.
  13. Christian A. Duncan, David Eppstein, Michael T. Goodrich, Stephen G. Kobourov, Maarten Löffler, and Martin Nöllenburg. Planar and poly-arc Lombardi drawings. Journal of Computational Geometry, 9(1):328-355, 2018. URL: https://doi.org/10.20382/jocg.v9i1a11.
  14. Marsh Duncan. Bézier curves I. In Applied Geometry for Computer Graphics and CAD, pages 135-160. Springer, 2005. URL: https://doi.org/10.1007/1-84628-109-1_6.
  15. Peter Eades, Niklas Gröne, Karsten Klein, Patrick Eades, Leo Schreiber, Ulf Hailer, and Falk Schreiber. CelticGraph: Drawing graphs as Celtic knots and links. In Michael A. Bekos and Markus Chimani, editors, Graph Drawing and Network Visualization (GD), pages 18-35. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-49272-3_2.
  16. David Eppstein. Planar Lombardi drawings for subcubic graphs. In Walter Didimo and Maurizio Patrignani, editors, Proc. 20th Int. Symp. Graph Drawing, volume 7704 of Lecture Notes in Computer Science, pages 126-137. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-36763-2_12.
  17. David Eppstein, Michael T Goodrich, and Jeremy Yu Meng. Confluent layered drawings. Algorithmica, 47:439-452, 2007. URL: https://doi.org/10.1007/s00453-006-0159-8.
  18. David Eppstein and Joseph Simons. Confluent Hasse diagrams. Journal of Graph Algorithms and Applications, 17(7):689-710, 2013. URL: https://doi.org/10.7155/jgaa.00312.
  19. Martin Fink, Herman Haverkort, Martin Nöllenburg, Maxwell Roberts, Julian Schuhmann, and Alexander Wolff. Drawing metro maps using Bézier curves. In Walter Didimo and Maurizio Patrignani, editors, Graph Drawing (GD), pages 463-474. Springer, 2013. URL: https://doi.org/0.1007/978-3-642-36763-2_41.
  20. Benjamin Finkel and Roberto Tamassia. Curvilinear graph drawing using the force-directed method. In János Pach, editor, Graph Drawing (GD), pages 448-453. Springer, 2005. URL: https://doi.org/10.1007/978-3-540-31843-9_46.
  21. Emden R. Gansner. Drawing graphs with Graphviz. Technical report, AT&T Bell Laboratories, 2009. Google Scholar
  22. Ashim Garg and Roberto Tamassia. Planar drawings and angular resolution: Algorithms and bounds. In Jan van Leeuwen, editor, Algorithms - ESA '94, volume 855 of Lecture Notes in Computer Science, pages 12-23. Springer, 1994. URL: https://doi.org/10.1007/BFB0049393.
  23. Michael T. Goodrich and Christopher G. Wagner. A framework for drawing planar graphs with curves and polylines. Journal of Algorithms, 37(2):399-421, 2000. URL: https://doi.org/10.1006/jagm.2000.1115.
  24. Seok-Hee Hong, Peter Eades, and Marnijati Torkel. Gdot: Drawing graphs with dots and circles. In 2021 IEEE 14th Pacific Visualization Symposium (PacificVis), pages 156-165, 2021. URL: https://doi.org/10.1109/PacificVis52677.2021.00029.
  25. Weidong Huang, Peter Eades, Seok-Hee Hong, and Henry Been-Lirn Duh. Effects of curves on graph perception. In 2016 IEEE Pacific Visualization Symposium (PacificVis), pages 199-203, 2016. URL: https://doi.org/10.1109/PACIFICVIS.2016.7465270.
  26. Weidong Huang, Seok-Hee Hong, and Peter Eades. Effects of crossing angles. In 2008 IEEE Pacific Visualization Symposium, pages 41-46, 2008. URL: https://doi.org/10.1109/PACIFICVIS.2008.4475457.
  27. Wolfram Research, Inc. Mathematica, Version 14.0. Champaign, IL, 2024. URL: https://www.wolfram.com/mathematica.
  28. Goos Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16:4-32, 1996. URL: https://doi.org/10.1007/BF02086606.
  29. Philipp Kindermann, Stephen Kobourov, Maarten Löffler, Martin Nöllenburg, André Schulz, and Birgit Vogtenhuber. Lombardi drawings of knots and links. In Graph Drawing and Network Visualization (GD), pages 113-126. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-73915-1_10.
  30. Michael E. Mortenson. Mathematics for Computer Graphics Applications. Industrial Press Inc., 1999. Google Scholar
  31. Walter Schnyder. Embedding planar graphs on the grid. In 1st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 138-148, 1990. URL: http://dl.acm.org/citation.cfm?id=320176.320191.
  32. Yusuke Suzuki. Re-embeddings of maximum 1-planar graphs. SIAM Journal on Discrete Mathematics, 24(4):1527-1540, 2010. URL: https://doi.org/10.1137/090746835.
  33. George B. Thomas and Ross L. Finney. Calculus and Analytic Geometry. Addison-Wesley, 9th ed. edition, 1996. Google Scholar
  34. Csaba D. Tóth. On RAC drawings of graphs with two bends per edge. In Michael A. Bekos and Markus Chimani, editors, Graph Drawing and Network Visualization (GD), pages 69-77. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-49272-3_5.
  35. William T. Tutte. How to draw a graph. Proceedings of the London Mathematical Society, s3-13(1):743-767, 1963. URL: https://doi.org/10.1112/plms/s3-13.1.743.
  36. Kai Xu, Chris Rooney, Peter Passmore, Dong-Han Ham, and Phong H. Nguyen. A user study on curved edges in graph visualization. IEEE Transactions on Visualization and Computer Graphics, 18(12):2449-2456, 2012. URL: https://doi.org/10.1109/TVCG.2012.189.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail