AdMaTilE: Visualizing Event-Based Adjacency Matrices in a Multiple-Coordinated-Views System (Poster Abstract)

Authors Nikolaus-Mathias Herl , Velitchko Filipov



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.46.pdf
  • Filesize: 0.55 MB
  • 3 pages

Document Identifiers

Author Details

Nikolaus-Mathias Herl
  • TU Wien, Austria
Velitchko Filipov
  • TU Wien, Austria

Acknowledgements

This work was supported by the FWF SANE project [10.55776/I6635].

Cite AsGet BibTex

Nikolaus-Mathias Herl and Velitchko Filipov. AdMaTilE: Visualizing Event-Based Adjacency Matrices in a Multiple-Coordinated-Views System (Poster Abstract). In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 46:1-46:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.46

Abstract

Conventional dynamic networks represent network changes via a discrete sequence of timeslices, which usually entails loss of information on fine-grained dynamics. Recently, event-based networks emerged as an approach to model this temporal (event-based) information more precisely. Adjacency-matrix-based visualizations of temporal networks are under-investigated in related literature and present a promising research direction for network visualization. Our approach AdMaTilE (Adjacency Matrix and Timeline Explorer) is designed to visualize event-based networks using multiple matrix views, timelines, difference maps, and staged transitions.

Subject Classification

ACM Subject Classification
  • Human-centered computing → Graph drawings
  • Human-centered computing → Visual analytics
Keywords
  • Event-based
  • Temporal Graphs
  • Adjacency Matrix
  • Network Visualization

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Daniel Archambault, Helen Purchase, and Bruno Pinaud. Animation, Small Multiples, and the Effect of Mental Map Preservation in Dynamic Graphs . IEEE Transactions on Visualization and Computer Graphics, 2011. URL: https://doi.org/10.1109/TVCG.2010.78.
  2. Alessio Arleo, Silvia Miksch, and Daniel Archambault. Event-based Dynamic Graph Drawing without the Agonizing Pain. Computer Graphics Forum, 41(6):226-244, 2022. URL: https://doi.org/10.1111/cgf.14615.
  3. Benjamin Bach, Emmanuel Pietriga, and Jean-Daniel Fekete. Visualizing Dynamic Networks with Matrix Cubes. In Proc. of the SIGCHI Conference on Human Factors in Computing Systems, CHI '14, pages 877-886. Association for Computing Machinery, 2014. URL: https://doi.org/10.1145/2556288.2557010.
  4. Fabian Beck, Michael Burch, Stephan Diehl, and Daniel Weiskopf. A Taxonomy and Survey of Dynamic Graph Visualization. Computer Graphics Forum, 36(1):133-159, 2017. URL: https://doi.org/10.1111/cgf.12791.
  5. Velitchko Filipov, Alessio Arleo, Markus Bögl, and Silvia Miksch. On Network Structural and Temporal Encodings: A Space and Time Odyssey. IEEE Transactions on Visualization and Computer Graphics, 2023. URL: https://doi.org/10.1109/TVCG.2023.3310019.
  6. Velitchko Filipov, Davide Ceneda, Daniel Archambault, and Alessio Arleo. TimeLighting: Guidance-Enhanced Exploration of 2D Projections of Temporal Graphs. In Graph Drawing and Network Visualization (GD '23), pages 231-245. Springer, 2024. URL: https://doi.org/10.1007/978-3-031-49272-3_16.
  7. Petter Holme and Jari Saramäki. Temporal Networks. Physics Reports, 519(3):97-125, 2012. URL: https://doi.org/10.1007/978-3-642-36461-7.
  8. Sébastien Rufiange and Michael J McGuffin. DiffAni: Visualizing Dynamic Graphs with a Hybrid of Difference Maps and Animation . IEEE Transactions on Visualization and Computer Graphics, 19(12):2556-2565, 2013. URL: https://doi.org/10.1109/TVCG.2013.149.
  9. Sébastien Rufiange and Guy Melançon. Animatrix: A Matrix-based Visualization of Software Evolution. In 2014 second IEEE working conference on software visualization, pages 137-146, 2014. URL: https://doi.org/10.1109/VISSOFT.2014.30.
  10. Paolo Simonetto, Daniel Archambault, and Stephen Kobourov. Event-based Dynamic Graph Visualisation. IEEE Transactions on Visualization and Computer Graphics, 26(7):2373-2386, 2018. URL: https://doi.org/10.1109/TVCG.2018.2886901.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail