,
Justin Dallant
,
Erik D. Demaine
,
Michael Kaufmann
,
Linda Kleist
,
Frederick Stock
,
Csaba D. Tóth
,
Torsten Ueckerdt
Creative Commons Attribution 4.0 International license
Given two classes of graphs, 𝒢₁ ⊆ 𝒢₂, and a c-connected graph G ∈ 𝒢₁, we wish to augment G with a smallest cardinality set of new edges F to obtain a k-connected graph G' = (V,E∪ F) ∈ 𝒢₂. In general, this is the c → k connectivity augmentation problem. Previous research considered variants where 𝒢₁ = 𝒢₂ is the class of planar graphs, plane graphs, or planar straight-line graphs. In all three settings, we prove that the c → k augmentation problem is NP-complete when 2 ≤ c < k ≤ 5. However, the connectivity of the augmented graph G' is at most 5 if 𝒢₂ is limited to planar graphs. We initiate the study of the c → k connectivity augmentation problem for arbitrary k ∈ ℕ, where 𝒢₁ is the class of planar graphs, plane graphs, or planar straight-line graphs, and 𝒢₂ is a beyond-planar class of graphs: 𝓁-planar, 𝓁-plane topological, or 𝓁-plane geometric graphs. We obtain tight bounds on the tradeoffs between the desired connectivity k and the local crossing number 𝓁 of the augmented graph G'. We also show that our hardness results apply to this setting. The connectivity augmentation problem for triangulations is intimately related to edge flips; and the minimum augmentation problem to the flip distance between triangulations. We prove that it is NP-complete to find the minimum flip distance between a given triangulation and a 4-connected triangulation, settling an open problem posed in 2014, and present an EPTAS for this problem.
@InProceedings{a.akitaya_et_al:LIPIcs.GD.2025.23,
author = {A. Akitaya, Hugo and Dallant, Justin and Demaine, Erik D. and Kaufmann, Michael and Kleist, Linda and Stock, Frederick and T\'{o}th, Csaba D. and Ueckerdt, Torsten},
title = {{The Price of Connectivity Augmentation on Planar Graphs}},
booktitle = {33rd International Symposium on Graph Drawing and Network Visualization (GD 2025)},
pages = {23:1--23:24},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-403-1},
ISSN = {1868-8969},
year = {2025},
volume = {357},
editor = {Dujmovi\'{c}, Vida and Montecchiani, Fabrizio},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2025.23},
URN = {urn:nbn:de:0030-drops-250095},
doi = {10.4230/LIPIcs.GD.2025.23},
annote = {Keywords: connectivity augmentation, local crossing number, flip distance}
}