Harmonious Simplification of Isolines

Authors Arthur van Goethem, Wouter Meulemans , Andreas Reimer, Bettina Speckmann



PDF
Thumbnail PDF

File

LIPIcs.GIScience.2021.II.8.pdf
  • Filesize: 1.45 MB
  • 16 pages

Document Identifiers

Author Details

Arthur van Goethem
  • Eindhoven University of Technology, The Netherlands
Wouter Meulemans
  • Eindhoven University of Technology, The Netherlands
Andreas Reimer
  • Eindhoven University of Technology, The Netherlands
Bettina Speckmann
  • Eindhoven University of Technology, The Netherlands

Acknowledgements

DEMs provided by the Byrd Polar and Climate Research Center and the Polar Geospatial Center under NSF-OPP awards 1543501, 1810976, 1542736, 1559691, 1043681, 1541332, 0753663, 1548562, 1238993 and NASA award NNX10AN61G. Computer time provided through a Blue Waters Innovation Initiative. DEMs produced using data from DigitalGlobe, Inc.

Cite AsGet BibTex

Arthur van Goethem, Wouter Meulemans, Andreas Reimer, and Bettina Speckmann. Harmonious Simplification of Isolines. In 11th International Conference on Geographic Information Science (GIScience 2021) - Part II. Leibniz International Proceedings in Informatics (LIPIcs), Volume 208, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
https://doi.org/10.4230/LIPIcs.GIScience.2021.II.8

Abstract

Current techniques for simplification focus on reducing complexity while maintaining the geometric similarity to the input. For isolines that jointly describe a scalar field, however, we postulate that geometric similarity of each isoline separately is not sufficient. Rather, we need to maintain the harmony between these isolines to make them visually relate and describe the structures of the underlying terrain. Based on principles of manual cartography, we propose an algorithm for simplifying isolines while considering harmony explicitly. Our preliminary visual and quantitative results suggest that our algorithm is effective.

Subject Classification

ACM Subject Classification
  • Information systems → Geographic information systems
  • Theory of computation → Computational geometry
Keywords
  • Simplification
  • isolines
  • harmony

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Helmut Alt, Bernd Behrends, and Johannes Blömer. Approximate matching of polygonal shapes. Annals of Mathematics and Artificial Intelligence, 13(3):251-265, 1995. Google Scholar
  2. Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry & Applications, 5(01n02):75-91, 1995. Google Scholar
  3. Richard Bellman and Robert Kalaba. On adaptive control processes. IRE Transactions on Automatic Control, 4(2):1-9, 1959. Google Scholar
  4. Prosenjit Bose, Sergio Cabello, Otfried Cheong, Joachim Gudmundsson, Marc J. van Kreveld, and Bettina Speckmann. Area-preserving approximations of polygonal paths. Journal of Discrete Algorithms, 4(4):554-566, 2006. Google Scholar
  5. Kevin Buchin, Maike Buchin, Wouter Meulemans, and Bettina Speckmann. Locally correct Fréchet matchings. Computational Geometry, 76:1-18, 2019. Google Scholar
  6. Kevin Buchin, Wouter Meulemans, André Van Renssen, and Bettina Speckmann. Area-preserving simplification and schematization of polygonal subdivisions. ACM Transactions on Spatial Algorithms and Systems, 2(1):Article No. 2, 1-36, 2016. Google Scholar
  7. Thomas C. van Dijk, Arthur van Goethem, Jan-Henrik Haunert, Wouter Meulemans, and Bettina Speckmann. Map schematization with circular arcs. In Proc. International Conference on Geographic Information Science, pages 1-17, 2014. Google Scholar
  8. Regina Estkowski and Joseph S. B. Mitchell. Simplifying a polygonal subdivision while keeping it simple. In Proc. 17th Symposium on Computational Geometry, pages 40-49, 2001. Google Scholar
  9. Julien Gaffuri, Cécile Duchêne, and Anne Ruas. Object-field relationships modelling in an agent-based generalisation model. In Proc. 12th Workshop on Generalisation and Multiple Representation, 2008. Google Scholar
  10. Aji Gao, Jingzhong Li, and Kai Chen. A morphing approach for continuous generalization of linear map features. Plos one, 15(12):e0243328, 2020. Google Scholar
  11. Arthur van Goethem, Wouter Meulemans, Andreas Reimer, and Bettina Speckmann. Simplification with parallelism. In Proc. 23rd ICA Workshop on Generalisation and Multiple Representation, 2020. Google Scholar
  12. Arthur van Goethem, Wouter Meulemans, Bettina Speckmann, and Jo Wood. Exploring curved schematization of territorial outlines. IEEE Transactions on Visualization and Computer Graphics, 21(8):889-902, 2015. Google Scholar
  13. Alan H. Goldman. Aesthetic qualities and aesthetic value. The Journal of Philosophy, 87(1):23-37, 1990. Google Scholar
  14. Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple polygon. Journal of Computer and System Sciences, 39(2):126-152, 1989. Google Scholar
  15. Eric Guilbert. Feature-driven generalization of isobaths on nautical charts: A multi-agent system approach. Transactions in GIS, 20(1):126-143, 2016. Google Scholar
  16. Eric Guilbert, Julien Gaffuri, and Bernhard Jenny. Terrain generalisation. In Abstracting geographic information in a data rich world, LNCG, pages 227-258. Springer, 2014. Google Scholar
  17. Ian M. Howat, Claire Porter, Benjamin E. Smith, Myoung-Jong Noh, and Paul Morin. The reference elevation model of Antarctica. The Cryosphere, 13(2):665-674, 2019. Google Scholar
  18. Eduard Imhof. Kartographische Geländedarstellung. De Gruyter, 1965. Google Scholar
  19. Barry J. Kronenfeld, Lawrence V. Stanislawski, Barbara P. Buttenfield, and Tyler Brockmeyer. Simplification of polylines by segment collapse: Minimizing areal displacement while preserving area. International Journal of Cartography, 6(1):22-46, 2020. Google Scholar
  20. Zhilin Li and Haigang Sui. An integrated technique for automated generalization of contour maps. The Cartographic Journal, 37(1):29-37, 2000. Google Scholar
  21. Maarten Löffler and Wouter Meulemans. Discretized approaches to schematization. In Proc. 29th Canadian Conference on Computational Geometry, pages 220-225, 2017. Google Scholar
  22. Thomas Mendel. Area-preserving subdivision simplification with topology constraints: Exactly and in practice. In Proce. 20th Workshop on Algorithm Engineering and Experiments, pages 117-128, 2018. Google Scholar
  23. Paulo Raposo. Scale-specific automated line simplification by vertex clustering on a hexagonal tessellation. Cartography and Geographic Information Science, 40(5):427-443, 2013. Google Scholar
  24. Andreas Reimer. Cartographic modelling for automated map generation. PhD thesis, Technische Universiteit Eindhoven, 2015. Google Scholar
  25. Timofey E. Samsonov. Automated conflation of digital elevation model with reference hydrographic lines. ISPRS International Journal of Geo-Information, 9(5), 2020. Google Scholar
  26. Timofey E. Samsonov, Sergey Koshel, Dmitry Walther, and Bernhard Jenny. Automated placement of supplementary contour lines. International Journal of Geographical Information Science, 33(10):2072-2093, 2019. Google Scholar
  27. Wilhelm Schüle. Zur Maßstabsfrage des neuen schweizerischen Kartenwerkes, mit einem Nachtrag und Anhang zur Kurvendarstellung auf topographischen Karten. In Jahresbericht der Geographischen Gesellschaft von Bern, Bd. XXVIII, pages 31-53, 1929. Google Scholar
  28. Andriani Skopeliti, Lysandros Tsoulos, and Shachak Pe’eri. Depth contours and coastline generalization for harbour and approach nautical charts. ISPRS International Journal of Geo-Information, 10(4):197, 2021. Google Scholar
  29. Xiaohua Tong, Yanmin Jin, Lingyun Li, and Tinghua Ai. Area-preservation simplification of polygonal boundaries by the use of the structured total least squares method with constraints. Transactions in GIS, 19(5):780-799, 2015. Google Scholar
  30. Guillaume Touya, Hugo Boulze, Anouk Schleich, and Hervé Quinquenel. Contour lines generation in karstic plateaus for topographic maps. In Proc. International Cartographic Conference, volume 2, pages 1-8, 2019. Google Scholar
  31. Dražen Tutić and Miljenko Lapaine. Area preserving cartographic line generalizaton. Kartografija i geoinformacije (Cartography and Geoinformation), 8(11):84-100, 2009. Google Scholar
  32. Dražen Tutić, Matjaž Štanfel, and Tomislav Jogun. Automation of cartographic generalisation of contour lines. In Proc. 10th ICA Mountain Cartography Workshop, pages 65-77, 2017. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail