Navigating Your Way! Increasing the Freedom of Choice During Wayfinding

Authors Bartosz Mazurkiewicz , Markus Kattenbeck , Ioannis Giannopoulos

Thumbnail PDF


  • Filesize: 0.84 MB
  • 16 pages

Document Identifiers

Author Details

Bartosz Mazurkiewicz
  • Geoinformation, TU Wien, Austria
Markus Kattenbeck
  • Geoinformation, TU Wien, Austria
Ioannis Giannopoulos
  • Geoinformation, TU Wien, Austria

Cite AsGet BibTex

Bartosz Mazurkiewicz, Markus Kattenbeck, and Ioannis Giannopoulos. Navigating Your Way! Increasing the Freedom of Choice During Wayfinding. In 11th International Conference on Geographic Information Science (GIScience 2021) - Part II. Leibniz International Proceedings in Informatics (LIPIcs), Volume 208, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Using navigation assistance systems has become widespread and scholars have tried to mitigate potentially adverse effects on spatial cognition these systems may have due to the division of attention they require. In order to nudge the user to engage more with the environment, we propose a novel navigation paradigm called Free Choice Navigation balancing the number of free choices, route length and number of instructions given. We test the viability of this approach by means of an agent-based simulation for three different cities. Environmental spatial abilities and spatial confidence are the two most important modeled features of our agents. Our results are very promising: Agents could decide freely at more than 50% of all junctions. More than 90% of the agents reached their destination within an average distance of about 125% shortest path length.

Subject Classification

ACM Subject Classification
  • Information systems → Decision support systems
  • Computing methodologies → Agent / discrete models
  • Information systems → Location based services
  • Agent-based Simulation
  • Wayfinding
  • Free Choice Navigation


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. S. Abar, G. K. Theodoropoulos, P. Lemarinier, and G. O’Hare. Agent based modelling and simulation tools: A review of the state-of-art software. Comp. Science Review, 24:13-33, 2017. Google Scholar
  2. N. Alinaghi, M. Kattenbeck, A. Golab, and I. Giannopoulos. Will You Take this Turn? Gaze-Based Turning Activity Recognition During Navigation. In K.Janowicz and J. A. Verstegen, editors, 11th Int. Conf. on Geographic Information Science (GIScience 2021) - Part II, 2021. Google Scholar
  3. J. N. Bailenson, M. S. Shum, and D. H. Uttal. Road climbing: Principles governing asymmetric route choices on maps. J. of Env. Psychology, 18(3):251-264, 1998. Google Scholar
  4. D. Bhowmick, S. Winter, and M. Stevenxon. Comparing the costs of pedestrian wayfinding heuristics across different urban network morphologies. GeoComputation, pages 1-15, 2019. Google Scholar
  5. L. Crociani, G. Vizzari, D. Yanagisawa, K. Nishinari, and S. Bandini. Route choice in pedestrian simulation: Design and evaluation of a model based on empirical observations. Intelligenza Artificiale, 10(2):163-182, 2016. Google Scholar
  6. L. Dahmani and V. D. Bohbot. Habitual use of GPS negatively impacts spatial memory during self-guided navigation. Scientific Reports, 10(1):1-14, 2020. Google Scholar
  7. N. Dethlefs, Y. Wu, A. Kazerani, and S. Winter. Generation of adaptive route descriptions in urban environments. SPAT COGN COMPUT, 11(2):153-177, 2011. Google Scholar
  8. D. Dobbelstein, E. Rukzio, and P. Henzler. Unconstrained pedestrian navigation based on vibro-tactile feedback around the wristband of a smartwatch. Proc. of CHI '16, p.2439-2445, 2016. Google Scholar
  9. R.M. Downs and D. Stea. Maps in Minds: Reflections on Cognitive Mapping. Geography Series. Harper & Row, 1977. Google Scholar
  10. G. Filomena, E. Manley, and J. A. Verstegen. Perception of urban subdivisions in pedestrian movement simulation. PLoS ONE, 15(12):1-27, 2020. Google Scholar
  11. P. Fogliaroni, D. Bucher, N. Jankovic, and I. Giannopoulos. Intersections of Our World. In Winter et al., editor, 10th Int. Conf. on Geographic Information Science, 2018. Google Scholar
  12. D. Gallo, S. Shreepriya, and J. Willamowski. RunAhead: Exploring Head Scanning based Navigation for Runners. In Proc. of CHI 2020., pages 1-13, 2020. Google Scholar
  13. A. Gardony, T. Brunyé, and H. Taylor. Navigational Aids and Spatial Memory Impairment: The Role of Divided Attention. SPAT COGN COMPUT, 15(4):246-284, 2015. Google Scholar
  14. I. Giannopoulos, P. Kiefer, and M. Raubal. Gazenav: Gaze-based pedestrian navigation. In Proc. of MobileHCI 2015, page 337–346. ACM, 2015. Google Scholar
  15. I. Giannopoulos, P. Kiefer, M. Raubal, K. F. Richter, and T. Thrash. Wayfinding decision situations: A conceptual model and evaluation. In Int. Conf. on Geographic Information Science, pages 221-234. Springer, 2014. Google Scholar
  16. K. Gramann, P. Hoepner, and K. Karrer-Gauss. Modified navigation instructions for spatial navigation assistance systems lead to incidental spatial learning. FRONT PSYCHOL, 8, 2017. Google Scholar
  17. A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics, and function using networkx. In G. Varoquaux, T. Vaught, and J. Millman, editors, Proc. of the 7th Python in Science Conf., pages 11-15, Pasadena, CA USA, 2008. Google Scholar
  18. S. K. Harootonian, R. C. Wilson, L. Hejtmánek, E. M. Ziskin, and A. D. Ekstrom. Path integration in large-scale space and with novel geometries: Comparing vector addition and encoding-error models. PLoS computational biology, 16(5):e1007489, 2020. Google Scholar
  19. H. Hochmair. Investigating the effectiveness of the least-angle strategy for wayfinding in unknown street networks. Env and Planning B: Planning and Design, 32(5):673-691, 2005. Google Scholar
  20. H. Hochmair and A. Frank. Influence of estimation errors on wayfinding-decisions in unknown street networks – analyzing the least-angle strategy. SCC, 2(4):283-313, 2002. Google Scholar
  21. T. Ishikawa. Satellite Navigation and Geospatial Awareness: Long-Term Effects of Using Navigation Tools on Wayfinding and Spatial Orientation. Prof. Geographer, 71(2), 2019. Google Scholar
  22. D. Jonietz and P. Kiefer. Uncertainty in Wayfinding: A Conceptual Framework and Agent-Based Model. In E. Clementini et al., editor, Proc. of COSIT 2017, pages 15:1-15:14, 2017. Google Scholar
  23. Angelika Kneidl. Methoden zur Abbildung menschlichen Navigationsverhaltens bei der Modellierung von Fußgängerströmen. Dissertation, Technische Universität München, 2013. Google Scholar
  24. J. M. Loomis, R. L. Klatzky, R. G. Golledge, and J. W. Philbeck. Human navigation by path integration. In Wayfinding Behavior, pages 125-151. Johns Hopkins University Press, 1999. Google Scholar
  25. C. Magnusson, K. Rassmus-Gröhn, and D. Szymczak. Navigation by pointing to GPS locations. Personal and Ubiquitous Computing, 16(8):959-971, 2012. Google Scholar
  26. M. Pielot and S. Boll. Tactile wayfinder: Comparison of tactile waypoint navigation with commercial pedestrian navigation systems. In P. Floréen, A. Krüger, and M. Spasojevic, editors, Proc. of the 8th Int. Conf. on Pervasive Computing, pages 76-93. Springer Berlin Heidelberg, 2010. Google Scholar
  27. A. Rao and M. Georgeff. BDI Agents: From Theory to Practice. Proc. of ICMAS '95, pages 312-319, 1995. Google Scholar
  28. K. F. Richter and M. Duckham. Simplest instructions: Finding easy-to-describe routes for navigation. In T. J. Cova, H. J. Miller, K. Beard, A. U. Frank, and M. F. Goodchild, editors, Geographic Information Science, pages 274-289, Berlin, Heidelberg, 2008. Springer. Google Scholar
  29. S. Robinson, M. Jones, P. Eslambolchilar, R. Murray-Smith, and M. Lindborg. “I Did It My Way”: Moving Away from the Tyranny of Turn-by-Turn Pedestrian Navigation. In Proc. of MobileHCI '10, pages 341-344, 2010. Google Scholar
  30. G.-L. Savino, L. Meyer, E. Schade, T. Tenbrink, and J. Schöning. Point me in the right direction: Understanding user behaviour with as-the-crow-flies navigation. In Proc. of MobileHCI '20, pages 1-11, 2020. Google Scholar
  31. F. Shatu, T. Yigitcanlar, and J. Bunker. Shortest path distance vs. least directional change: Empirical testing of space syntax and geographic theories concerning pedestrian route choice behaviour. J. of Transport Geography, 74(May 2018):37-52, 2019. Google Scholar
  32. J. Thompson, M. Stevenson, and J. S. Wijnands et al. (8). A global analysis of urban design types and road transport injury: an image processing study. The Lancet Planetary Health, 4(1):e32-e42, 2020. Google Scholar
  33. P. W. Thorndyke and B. Hayes-Roth. Differences in spatial knowledge acquired from maps and navigation. Cognitive psychology, 14(4):560-589, 1982. Google Scholar
  34. L. B. Tschander, H. R. Schmidtke, C. Eschenbach, C. Habel, and L. Kulik. A geometric agent following route instructions. In Int. Conf. on Spatial Cognition, pages 89-111. Springer, 2002. Google Scholar
  35. J. M. Usher and L. Strawderman. Simulating operational behaviors of pedestrian navigation. Computers & Industrial Engineering, 59(4):736-747, 2010. Google Scholar
  36. A. Wunderlich and K. Gramann. Electrocortical evidence for long-term incidental spatial learning through modified navigation instructions. In Proc. of Spatial Cognition '18, 2018. Google Scholar
  37. D. Xu, X. Huang, J. Mango, X. Li, and Z. Li. Simulating multi-exit evacuation using deep reinforcement learning. Transactions in GIS, pages 1-23, 2021. Google Scholar
  38. J. Ye, X. Li, X. Zhang, Q. Zhang, and W. Chen. Deep learning-based human activity real-time recognition for pedestrian navigation. Sensors, 20(9), 2020. Google Scholar
  39. H. D. Zimmer, S. Münzer, and J. Baus. From Resource-Adaptive Navigation Assistance to Augmented Cognition, pages 35-53. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. Google Scholar
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail